Тнвд дизельного двигателя схема: Какие существуют системы подачи топлива в дизельном ДВС

Содержание

Какие существуют системы подачи топлива в дизельном ДВС

Категория: Полезная информация.

Как мы знаем, в дизельном ДВС топливо воспламеняется не от внешнего источника (искра зажигания в бензиновом моторе), а в результате сильного сжатия и нагрева. При этом топливно-воздушная смесь подается и распыляется в цилиндрах под высоким давлением. С этой целью в дизелях используются разные типы систем подачи топлива.

Топливная система дизельных ДВС: основные принципы

Сначала воздух подается в цилиндр, затем сжимается, нагреваясь в процессе до экстремальных температур, и лишь к концу такта сжатия в цилиндр подается дизельное топливо. Подается таким образом: впрыскивается в камеру сгонария под высоким давлением (от 100 до 2000 атмосфер) и распыляется. Поэтому, вне зависимости от типа топливной системы дизеля, в ней всегда есть два компонента:

  • тот, что создает высокое давление – топливный насос высокого давления (ТНВД)
  • и тот, что впрыскивает и разбрызгивает горючее по камере – форсунка.

В зависимости от типа топливной системы дизельного ДВС, отличается конструкция ТНВД и устройство форсунок. Также отличаются схемы управления этими элементами и место их расположения.

Основные типы топливных систем дизеля

Наибольшее распространение получили 4 типа топливных систем дизельных моторов:

  • рядный ТНВД
  • ТНВД распределительного типа
  • насос-форсунки
  • система Common Rail

Рядный ТНВД – проверенное десятилетиями решение, которое активно применяется на грузовой и специальной технике с дизельными моторами. В основе этой системы подачи топлива находится работа плунжерной пары. Цилиндр движется в гильзе, создавая давление и сжимая топливо до необходимых показателей. Как только они достигнуты, открывается специальный клапан, подающий топливо на форсунку, которая впрыскивает его в цилиндр. Плунжер в это время движется вниз, открывает канал для впуска горючего в пространство гильзы с помощью топливоподкачивающего насоса, и цикл повторяется.

Работа самого плунжера становится возможна благодаря кулачковому валу, который приводится от мотора. Кулачки «толкают» клапана, а мкфта опережения впрыска, соединяющая ТНВД и двигатель, корректирует работу топливной системы.

Неоспоримые достоинства системы подачи топлива с рядными ТНВД – их ремонтопригодность и доступность обслуживания.

ТНВД распределительного типа конструктивно напоминает рядный топливный насос. Отличие заключается в количестве плунжерных пар. Если в рядном ТНВД одна пара идет на один цилиндр, то в распределительном работы одной плунжерной пары достаточно, чтобы обслуживать два, три, и даже шесть цилиндров. Это достигается через опцию вращения плунжера вокруг оси. Вращаясь, плунжер поочередно открывает выпускные клапана, подавая горючее на форсунки нескольких цилиндров.

Эволюция распределительных ТНВД привела к тому, что появились уже роторные топливные насосы: в них плунжеры помещаются в ротор и в процессе работы движутся навстречу двуг другу, пока ротор вращает их, распределяя тем самым топливо по камере сгорания.

Преимущество системы подачи топлива с распределительным ТНВД – компактность самого устройства. Недостатки – сложность настройки, применение схем электронного управления и корректировки работы.

Система подачи топлива в цилиндр с помощью насос-форсунок вообще исключает необходимость ТНВД как отдельного элемента. В этом случае, форсунка и насосная секция – это один узел в общем корпусе.

 

В результате достигается легкость регулировки подачи топлива в конкретный цилиндр, а при выходе из строя одной насос-форсунки, остальные продолжают работать, что облегчает ремонт. Конструктивно, насос-форсунки приводят в действие плунжеры распредвал ГРМ в головке блока цилиндров.

Система подачи топлива насос-форсунками распространена не только на грузовых, но и на легковых автомобилях. К недостаткам ее можно отнести высокую стоимость запчастей, а также крайнюю чувствительность к качеству дизельного топлива. Мельчайшие примеси в горючем могут легко вывести из строя насос-форсунку, что отражается на стоимости эксплуатации такого решения в личном автомобиле.

Система Common Rail стала своего рода прорывом в части решения механизма подачи топлива в дизельных ДВС. Эта система позволяет экономить топливо при высоком КПД дизеля, что и сделало ее такой популярной. Common Rail придумали инженеры Bosch еще в 90-х годах. Сегодня большинство дизельного транспорта оснащается именно Коммон Реил.

Главное отличие этой системы – наличие аккумулятора высокого давления в общей магистрали. Туда топливо нагнетается отдельным ТНВД, чтобы затем под постоянным давлением подаваться на форсунки. Именно постоянство давления дает возможность быстро и эффективно впрыскивать горючее в цилиндр. Как результат – производительная, мягкая и комфортная работа дизельного двигателя. Бонусом – упрощение конструкции самого ТНВД в системе Common Rail.

 

Управляется работа системы отдельным ЭБУ: группа датчиков сообщает контроллеру, сколько и как скоро нужно подать дизельное топливо в цилиндры. С другой стороны, сложность и недостаток Коммон Реил обусловлена как раз умной электроникой и принципом работы системы. Поэтому владельцам таких решений стоит выбирать качественное топливо и своевременно менять топливные фильтры.

О том, как еще продлить жизнь вашего дизельного двигателя, мы писали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

Принцип работы топливного насоса высокого давления

Для качественной работы дизельной силовой установки используется топливный насос высокого давления. ТНВД дизельного двигателя подает солярку в рабочий цилиндр в необходимый промежуток времени. В зависимости от частоты вращения коленчатого вала топливный насос высокого давления увеличивает или уменьшает дозу солярки подаваемой к распылителю.

Как работает ТНВД дизельного двигателя

Крутящий момент передается к устройству от коленчатого вала силовой установки. При работе  поршень плунжерного типа нагнетает давление дизельного топлива. Дозирующая система определяет объём солярки подаваемой к распылителю.

Топливо от насоса высокого давления подаётся к распылителям по металлическим трубопроводам.

В зависимости от вида насоса управление подачей топлива в рабочие цилиндры осуществляется механическим способом или при помощи электроники.

Механическое управление

При механическом управлении  шток дозирующей системы механически связан с органом управления, установленным в кабине оператора. Нажатием на педаль регулируется количество солярки, подаваемой в рабочий цилиндр.

ТНВД оборудованы специализированным клапаном перекрывающим подачу топлива. Он используется для того чтобы заглушить двигатель внутреннего сгорания. Управление клапаном механическое, при помощи троса или рычага.

Электронное управление

Электронный блок управления определяет дозу подаваемой солярки исходя из различных данных. На процессор ЭБУ поступают сведения с датчиков о:

  • Степени нагрева двигателя внутреннего сгорания;
  • Температуре и давлении надувочного воздуха;
  • Расположении органа управления;
  • Крутящем моменте.

Исходя из этих данных, электронному блоку управления, удается точно рассчитать количество солярки необходимое для нормальной работы двигателя внутреннего сгорания при различных нагрузках.

ВАЖНО: Использование насосов с электронным управлением позволяет более точно дозировать дизельное топливо. Это способствует увеличению мощности силовой установки и снижению вредных выбросов в атмосферу.

Виды ТНВД дизельного двигателя

В зависимости от устройства топливные насосы дизельного двигателя делятся на несколько видов:

  1. Изделия с непосредственным впрыском;
  2. Аккумуляторные устройства.

Непосредственного типа

Насосы с прямой подачей имеют механический привод и управление. Нагнетание высокого давления осуществляется поршнем плунжерного типа. Нагнетаемое давление подается сразу на распылитель необходимого цилиндра. Для каждого рабочего цилиндра в насосе предусмотрена отдельная камера.

Аккумуляторного типа

Принцип действия устройства аккумуляторного типа отличается. Нагнетание горючего осуществляется в камеру аккумулятора. Из камеры солярка под давлением подаётся к необходимому распылителю. Аккумуляторные устройства позволяют добиться высокой мощности двигателя внутреннего сгорания.

  Двигатель К4М : Устройство, ресурс, тюнинг

В зависимости от устройства насосы делятся на рядные, распределительные и магистральные.

Рядной конструкции

В рядных насосах для каждого рабочего цилиндра отведена отдельная секция. Секции расположены в один ряд. Каждая секция имеет один нагнетательный элемент. Подача горючего осуществляется по специализированным каналам.

Каждая секция соединена с форсункой при помощи металлической трубки. Привод поршней осуществляется от распределительного вала с кулачками, смещенными по отношению к оси.

Крутящий момент на устройство передаётся от коленчатого вала двигателя.

СПРАВКА: Рядное устройство отличается высокой надежностью и неприхотливостью к качеству дизельного топлива. В связи с тем, что для каждого рабочего цилиндра отведена отдельная секция нагрузка на поршни невысокая. Это увеличивает срок службы узла.

Устройство рядного ТНВД дизельного двигателя заключается в следующем. Вал со смещенными частями вращается, попеременно воздействуя на штоки поршней.

При нажатии на шток поршень перемещается, вверх сжимая горючее, находящееся в камере. По достижении необходимого давления открывается выпускной механизм.

Он сообщен с трубопроводом, ведущим к определённому распылителю. Солярка под высоким давлением поступает к распылителю.

В обратном направлении толкатель движется под действием силовой пружины. При этом в камере образуется вакуум, открывающий впускной механизм. При открытии впускного механизма топливо попадает в камеру. Подачу топлива из бака осуществляет подкачивающая помпа. Подкачивающий насос дизельного двигателя установлен в корпусе ТНВД и имеет привод от распределительного вала.

ВНИМАНИЕ: Смазка вращающихся деталей узла осуществляется маслом из системы смазки силового агрегата. Нагнетание давления масла осуществляется насосом шестеренчатого типа. Такая конструкция позволяет увеличить ресурс работы узла.

Распределяющей конструкции

Распределительные насосы имеют один или два нагнетающих элемента. Распределение горючего между распылителями силового агрегата осуществляется специализированной головкой. Один нагнетающий элемент отвечает за подачу горючего одновременно на несколько распылителей.

Вращение вала со смещенными частями осуществляется синхронно с вращением коленчатого вала силовой установки. При вращении смещенная часть оказывает воздействие на шток. Толкатель перемещает поршень, создавая высокое давление в камере. После сжатия открывается выпускной механизм, пропуская солярку к распределительной головке.

Головка используется для распределения подачи солярки к необходимому распылителю. После нагнетания давления  поршень возвращается в обратном направлении под действием пружины. При движении поршня в обратном направлении открывается впускной механизм и  горючее попадает в камеру. После этого цикл работы поршня повторяется.

  Двигатель Д 240: Устройство и технические характеристики

Насосы распределительного типа имеют небольшие габариты. Недостатком устройств такого типа является небольшой срок службы. Это объясняется высокой нагрузкой на нагнетающие части.

Магистральной конструкции

Устройство магистрального насоса отличается тем, что топливо не нагнетается непосредственно в трубопровод распылителя. Перед попаданием в трубопровод солярка под высоким давлением накачивается в аккумулятор.

Привод поршней в насосе магистрального типа осуществляется валом со смещенными частями. При смещении кулачка вниз поршень под действием пружины опускается, создавая вакуум в камере. Под действием вакуума открывается впускной механизм, и камера заполняется горючим, поступающим от подкачивающей помпы.

При движении элемента нагнетания в обратном направлении впускной механизм закрывается и в камере создается высокое давление. Под действием давления открывается выпускной механизм, через который солярка поступает в аккумулятор. Определение необходимой дозы горючего для нормальной работы двигателя внутреннего сгорания осуществляется электронным блоком управления.

Из аккумулятора горючее под высоким давлением поступает к распылителям силовой установки. Такая конструкция позволяет увеличить давление. Это повышает показатели мощности силовой установки при любой частоте вращения коленчатого вала.

Возможные неисправности и методы их устранения

Некорректная работа ТНВД дизельного двигателя может выражаться в следующих признаках:

  • Отклонение  показателя расходования горючего от нормы;
  • Появление отработавших газов черного цвета;
  • Повышенный уровень шума при работе силовой установки;
  • Потеря мощности;
  • Плохой запуск силовой установки.

Основной причиной возникновения неисправностей является плохое качество солярки. В рабочей смеси плохого качества присутствуют мелкие абразивные частицы. Они негативно влияют на нагнетательные элементы и распылители двигателя внутреннего сгорания.

Некорректная работа ТНВД может быть вызвана неправильной регулировкой узла. Для выявления неисправностей потребуется провести диагностику. Самостоятельно диагностировать неисправности невозможно. Для этого необходимо специализированное оборудование и технические знания. После правильной настройки ТНВД двигатель будет отвечать всем необходимым требованиям.

Для устранения неисправностей необходимо заменить изношенные части. Замену комплектующих осуществляют  квалифицированные специалисты. Устройство устанавливают на предусмотренный для этого стенд. После чего осуществляют диагностику и выполняют все необходимые регулировки.

Неполадки могут возникнуть в результате сбоя в электронной системе управления. Для устранения потребуется прошить электронный блок управления. При прошивке программируется процессор электронного блока управления. Для этого используется специализированное программное обеспечение.

ВАЖНО: Прошивку электронного блока управления следует доверить высококвалифицированным специалистом. Неправильно проведенная процедура может привести к выходу устройства из строя и необходимости его полной замены.

Тнвд бензинового двигателя

Некоторые автовладельцы задаются вопросом, зачем ТНВД на бензиновом двигателе? Устройства создающее высокое давление используются не только на дизельных силовых агрегатах. Бензиновые моторы с прямым впрыском топлива оборудованы ТНВД.

  Двигатель 4s fe: Характеристики двигателя и тюнинг

При распределенном впрыске топлива бензин поступает во впускной коллектор. При непосредственном впрыске бензин под давлением поступает в камеру сгорания. Форсунки для подачи бензина установлены в головке блока цилиндров.

В отличие от дизельного силового агрегата бензиновые моторы оснащаются топливным насосом, нагнетающим более низкое давление. Это снижает нагрузку на нагнетающие элементы и увеличивает срок службы узла без дополнительного ремонта.

Устройство Тнвд бензинового двигателя позволяет подавать рабочую смесь в необходимый цилиндр. Такая конструкция снижает расход бензина и повышает показатели мощности силового агрегата. Недостатком конструкции является требовательность к качеству бензина.

Устройство оборудовано клапаном с электронным управлением. Он необходим для  принудительного перекрывания подачи топлива. Управление дозирующей системой и электроклапаном перекрывания подачи топлива осуществляется электроникой.

Тнвд бензинового двигателя – распределительного типа. Бензин под давлением подается к распределительной головке. Она используется для подачи бензина в определенный рабочий цилиндр. Такая конструкция позволяет использовать один  нагнетательный элемент для снабжения горючим всех рабочих цилиндров.

Неисправности и методы их устранения

Основные поломки возникают из-за плохого качества бензина. Твердые частицы, находящиеся в топливе негативно влияют на движущиеся элементы узла. Износ деталей приводит к некорректной работе устройства.

Признаками нарушения работы являются:

  • Расход бензина, превышающий норму;
  • Снижение показателей мощности силового агрегата;
  • Затруднительный запуск мотора.

Для устранения неисправности необходимо заменить изношенные комплектующие. После замены потребуется регулировка на специализированном оборудовании.

Самостоятельно  отремонтировать и отрегулировать работу узла невозможно.

Для устранения неисправностей необходимо обратиться на станцию технического обслуживания, на которой имеется всё необходимое оборудование. Квалифицированные специалисты осуществят замену изношенных комплектующих и отрегулируют устройство.

Из вышеперечисленного следует, что насос высокого давления используется на силовых агрегатах различной конструкции. Он необходим для подачи бензина или солярки под давлением в цилиндры. Управление устройством осуществляется рычагом, установленным в кабине оператора. Ремонт и настройка узла требует навыков и применения специализированного оборудования.

Источник: https://toptexnik.ru/dvigarely/tnvd-dizelnogo-i-benzinovogo-dvigatelya-ustrojstvo-i-printsip-raboty

Тнвд дизельного двигателя: устройство, принцип работы, диагностика и регулировка :

Каждый водитель знает, что дизельные и бензиновые двигатели имеют различное устройство системы впрыска топлива. Так вот, самым главным компонентом первого считается ТНВД дизельного двигателя.

ТНВД: что же это такое?

В народе топливный насос высокого давления принято называть ТНВД дизельного двигателя. Такой агрегат является очень сложным и незаменимым элементом конструкции, так как самой главной задачей насоса является подача дизельного топлива под довольно высоким давлением.

ТНВД дизельного двигателя, цена которого указана в статье, способен обеспечивать правильную и очень точную подачу топлива к цилиндрам дизельного мотора под нужным давлением. Топливо подается очень точно измеренными порциями в самый подходящий для этого момент времени.

Каждая из них идеально соответствует двигательной нагрузке.

ТНВД дизельного двигателя могут отличаться по методам впрыскивания. Существуют изделия с аккумуляторным типом впрыскивания, а также модели непосредственного действия.

Первые устройства характеризуются тем, что на рабочий привод плунжера оказывают непосредственное воздействие сжатые газы в цилиндре ДВС. Или же воздействие может происходить благодаря работе пружин. Обратите внимание на то, что существуют модели насосов с гидравлическим аккумулятором, которые довольно часто встречаются в очень мощных дизельных двигателях внутреннего сгорания.

Второй же тип устройства можно охарактеризовать как изделие, имеющее механический привод плунжера. Это говорит о том, что явления нагнетания и впрыскивания проходят одновременно. ТНВД дизельного двигателя способен подавать правильную дозу топлива в каждый цилиндр по отдельности.

Основные причины неисправностей

Обратите внимание, что ТНВД дизельного двигателя, неисправности которого описаны ниже, является очень дорогим оборудованием, которое особенно требовательно к качеству самого горючего, а также любых материалов для смазывания. Не забудьте, что использование некачественного недорогого горючего очень быстро приведет к неисправности форсунки, отвечающей за протекание таких важных процессов как впрыскивание и распыление.

Признаки неисправностей

Существуют несколько признаков, свидетельствующих о том, что необходимо проводить ремонт ТНВД. Сюда можно отнести:

  • значительное увеличение расходных показателей горючего;
  • из выхлопной трубы вы заметите повышенную дымность нехарактерного цвета и запаха;
  • во время работы мотора будут издаваться посторонние шумы и звуки;
  • отдача и мощность двигателя внутреннего сгорания значительно и заметно падают;
  • все чаще будет заметно, что машина запускается не так просто и не так быстро.

Современные показатели диагностики

Диагностика ТНВД дизельного двигателя – это важные меры, принимаемые для профилактики проблем с мотором. Самые современные моторные устройства оборудованы специальной удобной системой впрыска топлива.

Такой электронный блок управления способен дозированно подавать горючее в цилиндры, при этом точно распределяя данный процесс по времени.

Эта система также способна определить, какое количество дизельного топлива необходимо.

Так вот, если владелец автомобиля начнет замечать даже малейшие перебои в работе системы, то нужно срочно отправлять своего «железного друга» на диагностику. Своевременное обращение в автосервис сможет повлиять на дельнейший процесс ремонта или же замену оборудования.

Во время проведения диагностики специалисты автосервиса смогут определить такие показатели работоспособности:

  • с какой частотой вращается вал;
  • насколько равномерно подается топливо;
  • показатели давления и определение его стабильности.

Эволюция системы

Всем известны глобальные проблемы, связанные с экологией нашей планеты.

Поэтому строгие нормы по изготовлению двигателей привели к тому, что массивные механические ТНВД дизельного двигателя, отзывы о котором вы можете прочитать в данной статье, стали заменяться современными системами, имеющими электронную регулировку.

К тому же насос, работающий на механике, не может обеспечивать правильную, быструю и точную подачу дизельного топлива. Также он не в состоянии молниеносно реагировать на очень быстро меняющиеся режимы работы мотора.

Такие популярные производители, как Nippon Denso, Bosch и многие другие уже вовсю используют электронные системы управления подачи дизельного горючего. К тому же в подобных разработках принимал участие топливный насос VE. Использование современных систем привело к возможности получения максимально быстрой подачи топлива отдельно в каждый рабочий цилиндр.

Такие системы пришлись по вкусу многим водителям, так как между циклами уменьшилась нестабильность процесса сгорания горюче-воздушных масс.

Также, что немаловажно, значительно уменьшились неравномерности в работе мотора на холостом ходу.

Некоторые модели были оборудованы специальным клапаном быстрого действия, разделяющим момент впрыскивания топливного горючего на две фазы. Такой процесс помог уменьшить жесткость самого сгорания.

Благодаря полученной точности разработчики смогли обеспечить минимальное количество вредных токсичных выбросов в атмосферу. Этому способствует практически полное сгорание самого топлива.

А вот эффективность такого агрегата значительно увеличила коэффициент полезного действия мотора и привела к получению итоговой мощности. Электронные системы работают благодаря ТНВД дизельного двигателя (принцип работы описан в данной статье).

Важно знать, что топливным насосом высокого давления можно управлять с помощью специального устройства. Оно позволяет отрегулировать положение дозаторов.

Как работает система

Электронный блок управления своевременно получает важные для работы сигналы от разных датчиков. При этом стоит учитывать такие характеристики, как положение газовой педали, температура горючего, с какой частотой вращается двигательный вал, а также температура жидкости для охлаждения.

ЭБУ устроен таким образом, чтобы у него была возможность получать такие данные, как скорость передвижения автомобиля, подъем иглы форсунок, а также температура и давление воздуха на впуске. Электронная система управления способна обработать всю информацию, полученную от датчиков, и передать сигнал к топливному насосу высокого давления.

А это, в свою очередь, обеспечивает правильную и своевременную подачу топлива к форсункам.

Также ЭБУ дополнительно учитывает угол впрыска в зависимости от условий работы автотранспортного средства.

Даже самая незначительная нагрузка будет замечена электронной системой управления, и насос получит сигнал о том, что нужно увеличить количество поступающего в систему топлива. Также ЭБУ способен контролировать деятельность свечей накаливания.

Он обращает внимание на такие параметры, как время, потраченное на само накаливание, а также временной период после этого. Не стоит забывать, что эти процессы напрямую зависят от температуры.

Устройство ТНВД дизельного двигателя

Рассмотрим устройство топливного насоса высокого давления на примере распределительного агрегата. Первое, что нужно учитывать, – это то, что насосы бывают одноплужерными и двуплужерными. При этом даже одна секция устройства может подавать смесь горючего сразу в несколько форсунок.

Итак, насос, о котором идет речь в данной статье, состоит из клапана редукции, регулятора режимов, дренажного штуцера, а также корпуса насосной секции.

Также устройство имеет элементы подачи топлива, корпус, люк, отвечающий за опережение впрыскивания, а также электромагнитный клапан и специальное устройство привода плунжера.

Конечно, топливный насос высокого давления имеет хоть и эффективное, но очень сложное устройство, поэтому провести диагностику будет не так-то просто. А вот ремонт – это вообще очень сложная задача, даже для хорошо оборудованного автосервиса.

Ремонт ТНВД

К поломкам топливного насоса высокого давления могут привести самые разнообразные причины. Большинство поломок отремонтировать своими руками просто невозможно. Даже в специальном автомобильном сервисе это считается довольно тяжелой для выполнения задачей.

Но если оборудование нуждается в замене каких-либо деталей, то это можно сделать и в гараже. Однако специалисты настоятельно не рекомендуют делать это самостоятельно, особенно без предварительной диагностики.

В любом случае регулировка ТНВД дизельного двигателя должна проводиться с применением специализированного стенда.

Самой распространенной причиной поломок считается износ самого дизельного двигателя. Это можно определить даже на слух. Поломанный двигатель работает слишком громко и издает странные шумы.

Также с каждым разом запустить мотор становится все тяжелее, при этом наблюдаются большие потери мощности. Ни в коем случае не используйте топливо плохого качества. На работе мотора это скажется очень быстро.

Отметим, что очень важную роль для исправности играет электроника автомобиля.

Для того чтобы произвести ремонт, чаще всего нужно просто заменить износившиеся детали. Но даже для этого нужно разобрать устройство. Конечно, вы можете сделать это и в своем гараже. Но если вы не обладаете специальными навыками, лучше не рискуйте и отправляйтесь в автосервис.

Процесс регулировки

Обратите внимание, что регулировка топливного насоса высокого давления должна проводиться только на специальных стендах высококвалифицированными работниками. Во время этого процесса обычно используют специально подобранные форсунки.

Перед началом регулировки насоса все форсунки должны быть правильно отрегулированы на специальном стенде с учетом всех технических параметров данной модели.

После того как насос будет отрегулирован, каждую форсунку устанавливают на цилиндр подходящей секции устройства, которая и регулировалась вместе с этой форсункой.

Как регулируется цикловая подача

Очень важная часть регулировки топливного насоса высокого давления – это процесс контроля самой топливной подачи на номинальном режиме. Чтобы это сделать, нужно рейку насоса установить в положение номинальной подачи при помощи специальной гайки. Во время номинальной частоты вращения обычно замеряют цикловую подачу каждой секции и при этом контролируют уровень топлива.

Правила эксплуатации: выбор масла

Срок службы ТНВД дизельного двигателя напрямую зависит от правильной эксплуатации, а также от используемого вами топлива и других материалов.

Для правильной и долгой работы устройства очень важно вовремя заливать машинное масло. Оно должно идеально подходить именно к вашему двигателю и обладать всеми нужными для него характеристиками.

Специалисты не рекомендуют очень часто менять марку масла, так как это может привести к образованию отложений, которые растворить не так уж и просто.

Проводите замену масла и фильтров один раз на каждые 7500 километров.

Залог длительной службы

Для того чтобы двигатель исправно работал долгие годы, нужно следовать определенным правилам, а именно:

  • Проводить своевременную замену ремня ГРМ. Это нужно делать каждые 50-60 тысяч километров.
  • Менять топливный фильтр каждые 10 тысяч километров.
  • Хорошо прогревать двигатель и стараться не ездить на высоких оборотах.
  • Проводить своевременную диагностику оборудования.

Несколько заключительных слов

Стоимость самого устройства составляет примерно триста долларов (типы ТНВД дизельных двигателей описаны в данной статье).

Ни в коем случае не игнорируйте диагностику, ведь даже самая незначительная неприятность может сделать вас жертвой или виновником дорожно-транспортных происшествий. Проводите все ремонтные работы только в специализированных сервисах.

Доверяйте ваш автомобиль исключительно высококвалифицированным профессионалам. Выполняя замену износившихся деталей, покупайте только оригинальные изделия от производителя.

Своевременная диагностика и использование высококачественных материалов будут залогом долгой жизни дизельного двигателя. Относитесь уважительно к вашему «железному другу» и вовремя диагностируйте все поломки. Только в таком случае он вам прослужит очень долго.

Источник: https://www.syl.ru/article/304487/tnvd-dizelnogo-dvigatelya-ustroystvo-printsip-rabotyi-diagnostika-i-regulirovka

Топливные насосы судового дизеля, принцип действия

Назначение топливных насосов — отмерить необходимую порцию топлива и подать его в цилиндр двигателя через форсунку в определенное время под нужным давлением.

Давление впрыска зависит от вида смесеобразования и системы впрыска и колеблется от 250 до 800 бар.

Существуют две системы впрыска: косвенная и непосредственная. При косвенной системе топливо насосом подается в толстостенную трубу-аккумулятор.

Специальные дозирующие устройства сообщают аккумуляторную трубу с форсунками цилиндров в момент подачи топлива.

При непосредственной системе впрыска для каждого цилиндра устраивают отдельный топливный насос, связанный с форсункой форсуночной трубкой.

Все топливные насосы современных дизелей — плунжерного типа и классифицируются по способу регулирования количества подаваемого в цилиндр топлива: клапанные, золотниковые, аккумуляторные. При клапанном распределении специальные клапаны, один или два, в определенное время сообщают надплунжерное пространство с перепускными каналами и отсекают подачу топлива.

У золотниковых топливных насосов отсечку осуществляет сам плунжер, который сообщает в определенное время надплунжерное пространство с перепускным каналом.

У клапанных и золотниковых насосов подача топлива осуществляется за счет набегания кулачной шайбы на толкатель плунжера, а заполнение надплунжерного пространства — за счет пружины, которая перемещает плунжер вниз при сбегании кулачной шайбы с толкателя.

У аккумуляторных топливных насосов надплунжерное пространство заполняется топливом под воздействием кулачной шайбы.

При этом пружина сжимается и в ней аккумулируется энергия, в момент впрыска пружина заставляет плунжер резко переместиться вверх.

Регулировка количества подаваемого топлива осуществляется за счет изменения хода плунжера. Топливные насосы аккумуляторного типа не нашли широкого применения в дизелях.

Если в начале хода плунжера топливо через открытый клапан у клапанных насосов или через специальный канал у золотниковых насосов идет на перепуск, то считают, что регулировка количества подаваемого топлива осуществляется в начале подачи (или началом подачи).

Если топливо в начале подачи идет к форсунке, а в конце подачи — на перепуск, то такие насосы регулируют концом подачи. Очень часто насосы первого типа называют насосами с переменным началом, а насосы второго типа — с переменным концом подачи.

В настоящее время как в клапанных, так и в золотниковых насосах регулируются и начало и конец подачи, т. е. топливо перепускается как в начале движения плунжера, так и в конце.

Несмотря на явное усложнение конструкции, такие насосы получили наибольшее распространение, так как топливо подается к форсунке только при высоких скоростях движения плунжера, т. е. при максимальных давлениях, этим достигается качественный распыл топлива и хорошее смесеобразование.

Топливный насос двигателей ДР 30/50-3. Насос имеет стальной кованый корпус 11, в котором нажимной гайкой 12 крепится плунжерная втулка 14; пружина 13 для осуществления всасывающего хода опирается на нажимную гайку 12 и тарелку 16.

В стальной части смонтированы также нагнетательный клапан 10; всасывающий клапан 8, который выполняет одновременно роль отсечного клапана, закрыт заглушкой 9. Стальной корпус крепится к чугунной станине 18, которую, в свою очередь, устанавливают и крепят на специаль- ной полке дизеля над распределительным валом топливных насосов.

В станине 18 насоса смонтированы толкатель 2 и система воздействия на отсечной (всасывающий) клапан 8.

Принцип действия насоса. Заполнение надплун-жерного пространства топливом происходит при сбегании кулачной шайбы с ролика 1 толкателя 2 и движении плунжера 15 вниз за счет пружины 13.

Всасывающий клапан 8 при этом находится в открытом состоянии автоматически — за счет разности давления в надплунжер-ном пространстве и всасывающей магистрали. В конце всасывающего движения плунжера, т. е.

перед началом нагнетания, всасывающий клапан 8 — через фигурный рычаг 17, эксцентрическую шейку 3 и промежуточный толкатель (4, 5, 6, 7) — поддерживается в открытом состоянии.

Таким образом, при набегании кулачной шайбы на ролик 1 толкателя 2 и движении плунжера вверх топливо будет перепускаться через открытый всасывающий клапан 8 во всасывающую магистраль.

Перепуск будет продолжаться до тех пор, пока левое плечо фигурного рычага 17, опускаясь вниз, не даст возможность всасывающему клапану 8 перекрыть всасывающую магистраль. В этот момент произойдет отсечка перепуска и топливо, оставшееся в надплунжерном пространстве, пойдет к форсунке. Изменение количества подаваемого топлива осуществляется поворотом рычага 19 и изменением положения эксцентрической шейки 3 валика 20 в пространстве. Очевидно, если шейку перемещать вверх, то зазор между клапаном и его седлом увеличится и на перепуск пойдет больше топлива.

Поскольку топливо перепускается во всасывающую магистраль в начале хода плунжера вверх, то насос имеет переменное начало и постоянный конец подачи. При опускании левого плеча фигурного рычага вниз зазор между клапаном и его седлом уменьшится и количество топлива, подаваемого к форсунке, увеличится.

  • Определенную подачу топливного насоса можно отрегулировать, изменив длину нижнего толкателя 4 за счет болта 6 и контргайки 5.
  • Все топливные насосы двигателя связаны между собой через рычаг 19 общей планкой (рейкой), которая, в свою очередь, связана одним концом с постом управления, другим—с регулятором двигателя.
  • По такому же принципу работают топливные насосы двигателей 8ДР 43/61, а также насосы многих моделей двигателей фирмы «Зульцер».

Топливный насос клапанного типа (рис. 51, б) с регулированием по началу и концу подачи двигателей ДКРН 70/120 (МАН). К стальному корпусу 8 крепится плунжерная втулка 6 (гайкой 7).

В корпус также вмонтированы: всасывающий клапан 9 вместе с корпусом, нагнетательные клапаны 10 и 11 в общем корпусе, отсечной клапан 19 в корпусе 20 и демпферное устройство, состоящее из поршня 18, нагруженного пружиной 17.

Система воздействия на отсечной клапан, состоящая из фигурного рычага 29, двухрожкового рычага 23, стержня 26 и толкателя 2 облицованного бронзовой втулкой 4, размещена в нижнем чугунном корпусе. Нагнетательный трубопровод 14 подключен к насосу ниппельным соединением.

Принцип действия насоса. При сбегании кулачной шайбы с ролика 1 толкателя 2 пружина 3 перемещает плунжер 5 вниз. В результате этого всасывающий клапан 9 открывается и топливо поступает в надплунжерное пространство.

Перед началом поступательного хода плунжера вверх левое плечо фигурного рычага 29 находится в нижнем крайнем положении, а правое плечо — через упорный винт 25, двухрожковый рычаг 23 и промежуточный стержень 26 — поддерживает отсечной клапан 19 в открытом положении.

Таким образом в начале нагнетания топливо по перепускным каналам А и Б пойдет во всасывающую систему (магистраль). Подача топлива к форсунке начинается в момент появления зазора между упорным винтом 25 и нижним рожком рычага 23, т. е. в момент посадки отсечного клапана 19 в гнездо под действием пружины 16 (упругость которой регулируется болтом 15 с контргайкой).

Отсечка в конце подачи произойдет, когда левое плечо фигурного рычага 29, перемещаясь вверх, через упорный сухарь 28 и промежуточный толкатель 26 откроет отсечной клапан 19 и топливо снова пойдет на перепуск.

Количество подаваемого топлива изменяют поворотом валиков 27 и 24, связанных между собой зубчатыми секторами; верхний валик системой рычагов, тяг и валиков связан с постом управления и регулятором. Шейки, на которых качаются рычаги 23 и 29, выполнены эксцентрично относительно осей валиков, поэтому при повороте рычаги опускаются вниз или перемещаются вверх.

При перемещении рычагов вниз зазор между отсечным клапаном 19 и его седлом уменьшается, а между промежуточным толкателем и упорным сухарем 28 увеличивается. В результате происходит ранняя посадка клапана в гнездо и позднее его открытие, и тогда больше топлива поступает в цилиндр.

Для уменьшения подачи топлива рычаг перемещают вверх, и зазор между клапаном и седлом увеличивается, а зазор между упорным сухарем и промежуточным толкателем уменьшается, в результате чего клапан по времени больше открыт и к форсунке поступает малая доза топлива. Такой способ регулирования дает возможность использовать на малой частоте вращения наибольшие скорости движения плунжера и автоматически изменять угол опережения подачи топлива в цилиндр в зависимости от частоты вращения коленчатого вала дизеля.

Индивидуальную регулировку насосов производят изменением длины промежуточного толкателя 26 при помощи гайки 22 и контргайки 21, а также упорным винтом 25. Мгновенное отключение насоса осуществляют индивидуальным открытием всасывающего клапана — через штифт 12 и кнопку 13.

К недостаткам насоса следует отнести сложность конструкции и регулирования, поэтому фирма МАН и ее лицензиаты на последних моделях дизелей ряда ДКРН 70/120 устанавливают золотниковые топливные насосы.

Топливные насосы золотникового типа в настоящее время получили наибольшее применение в судовых дизелях. От других насосов их отличает прежде всего простота конструкции, возможность регулирования начала и конца подачи, длительная работа без индивидуального регулирования, так как у них отсутствует отсечной клапан со сложной системой привода.

Принцип действия топливного насоса (рис. 52, а). Плунжерная втулка 2 топливного насоса запрессована в общий корпус (для небольших насосов). Топливоподкачивающий насос подает топливо в приемную полость вокруг плунжерной втулки. Когда плунжер 1 находится в н. м. т. топливо заполняет надплунжерное пространство насоса через отверстия 3 и 4.

При движении плунжера вверх до перекрытия впускных отверстий 3 и 4, топливо перетекает в приемную полость. После перекрытия отверстий плунжером начинается подача топлива к форсунке. Момент отсечки наступает тогда, когда винтовая кромка 5 на плунжере соединяет надплунжерное пространство с отверстием 3.

С этого момента, несмотря на поступательное движение плунжера вверх, топливо будет перетекать в приемную полость насоса. Уменьшение количества подаваемого топлива ocуществляют поворотом плунжера против часовой стрелки, при этом надплунжерное пространство раньше соединится с приемной полостью насоса.

Для выключения насоса плунжер поворачивают настолько, чтобы фрезерованный паз 6 оказался против перепускного канала 3— и надплунжерное пространство соединяется с приемной полостью насоса во время всего хода плунжера вверх.

У топливных насосов с нижним расположением винтовой кромки регулируется конец подачи. Если верхнюю кромку плунжера сделать винтовой, а нижнюю — прямой, то начало подачи будет переменным,а конец постоянным, и, наконец, если обе кромки выполнить винтовыми, то и начало и конец подачи будут переменными (рис. 52, б).

Конструкция топливного насоса золотникового типа мощного судового дизеля 8ДКРН 74/160-2 (БМЗ) изображена на рис. 53. На кронштейне 1, который крепится к остову дизеля, установлен чугунный корпус 4. На корпус 4 установлена промежуточная втулка 9. К ней через фланец 22 и стойку 11 крепится стальной кованый корпус 19. В корпусе 19 запрессована плунжерная втулка 17, в которой находится плунжер 15.

Поступательное движение плунжера вверх осуществляется от кулачной шайбы 2 через промежуточный ролик 3, ролик 5 толкателя и толкатель 6. Возвратный ход плунжера, находящегося длительное время в верхнем положении, происходит при сбегании промежуточного ролика 3 с кулачной шайбы 2 под действием пружин 7 и 8. Топливо подается к насосу высокого давления от топливоподкачивающего насоса по трубе 16.

При движении плунжера 15 вниз топливо через всасывающий клапан 18 попадает в надплунжерное пространство (необходимость установки всасывающего клапана вызвана незначительным временем, отведенным на заполнение надплунжерного пространства из-за специального профиля кулачной шайбы). При движении плунжера вверх всасывающий клапан 18 закрывается и топливо но трубе 27 подается к двум форсункам цилиндра.

  1. Для отсечки топлива на плунжере выфрезеровано два паза, заканчивающихся винтовыми кромками, которые в определенный момент соединяют нагнетательную полость с приемной.
  2. Для предотвращения резких колебаний давления при перепуске топлива в приемную полость насоса предусмотрено демпферное устройство 21.
  3. Наличие двух отсечных кромок и двух перепускных отверстий снимает с плунжера боковые нагрузки, что предотвращает односторонний износ плунжера и втулки, характерный для насоса с одним отсечным каналом.
  4. Изменение количества топлива, подаваемого за один впрыск, осуществляется поворотом плунжера 15 — через крестовину плунжера 12, поворотную втулку 13 и цапфу 14.

Цапфы всех насосов связаны между собой и с постом управления двигателя системой тяг и рычагов. При повороте плунжера 15 отсечные кромки раньше или позднее соединяют надплунжерное пространство с приемной полостью насоса и при этом изменяется полезный ход плунжера. Регулирование количества подаваемого топлива осуществляется по концу подачи.

Так как производительность топливоподкачивающего насоса выше максимального расхода топлива топливными насосами высокого давления, то часть топлива по трубе 20, снабженной невозвратным клапаном, отводится к расходным цистернам. При такой схеме обеспечивается постоянная циркуляция топлива через насосы, что предотвращает образование газовых пробок.

Изменение угла опережения подачи топлива в цилиндр осуществляется поворотом эксцентрика 23, который перемещает посредством рычага 24 ролик 3 и изменяет время начала поступательного хода плунжера и, следовательно, время начала подачи.

Нужно заметить, что при таком способе регулировки угла опережения подачи топлива изменяется в сторону ухудшения время начала подачи топлива при работе двигателя на задний ход, так как для переднего и заднего хода используется одна кулачная шайба и реверс двигателя осуществляется за счет углового поворота распределительного вала в сторону требуемого вращения коленчатого вала.

Для периодического контроля давления впрыска нагнетательную полость можно сообщить через клапан 25 с манометром 26. Выключение насоса осуществляют тягой 10.

Система смазки насосов высокого давления — индивидуальная.

Отсутствие нагнетательного клапана в насосе обеспечивает отсечку топлива при высоком давлении, что обусловливает быструю посадку иглы форсунки и отсутствие дополнительного вспрыска и подтекания топлива.

1 1 1 1 1 1 1 1 1 1 Rating 0.00 (0 Votes)

Источник: http://mirmarine.net/dvs/detali-uzly-i-sistemy-dizelya/23-toplivnye-nasosy

Насосы ТНВД: виды, принцип работы, назначение

ТНВД, или топливный насос высокого давления – неотъемлемый элемент в конструкции самоходного агрегата, работоспособность двигателя которого зависит от своевременной и непрерывной подачи топлива.

Сегодня он применяется в комплектации всех марок авто с дизельным двигателем и обеспечивает нагнетание топлива под нужным для запуска системы давлением и регулировку впрыска.

Функциональные параметры

Работа дизельного двигателя напоминает пришедшую на смену карбюратору инжекторную систему и зависит от принципа работы топливного насоса:

  • механический привод в комплектации некоторых моделей обеспечивает одновременное нагнетание и подачу топлива путем приведения в движение поршня;
  • в агрегатах с системой аккумуляторного впрыскивания основным движущим элементом является пружинный механизм или сжатый газ.

В конструкции некоторых устройств присутствует и дополнительный гидроаккумулятор – в них впрыск и инжекция независимы друг от друга и осуществляются в определенные отрезки времени.

Принцип действия

Первым в движение приводится сортировальный вал.

Устройство ТНВД

При его вращении происходит смещение поверхности толкателя, поршень поднимается и необходимое для запуска двигателя количество топлива вытесняется. Оно регулируется фужерами, угол впрыскиванияизменяемый, благодаря чему при наращивании оборотов увеличивается и объем топливной подачи.

Виды

Основные составляющие насоса ТНВД – объединенные плунжерной парой цилиндр и поршень – изготавливаются из закаленной стали высокого качества, предварительно прошедшей все стадии обработки.

По конструктивным отличиям насосы этой категории классифицированы на 3 вида:

  • рядные – топливо нагнетает одна плунжерная пара;
  • дистрибутивные или распределительные – топливо в таких системах равномерно подается сразу во все цилиндры двигателя;
  • магистральные – обеспечивают подачу топлива исключительно на встроенный аккумулятор.

Рядные

Рядные насосы уже много лет не используются в комплектации легковых авто, но благодаря надежности присутствуют в конструкции грузового транспорта.

Количество плунжерных пар в составе такого агрегата соответствует количеству цилиндров, каждая из них приводится в движение усилием кулачкового вала после запуска коленвала.

В результате давление в системе повышается, открывается нагнетательный клапан и топливо поступает к соответствующей форсунке.

Топливный Насос Т 25 Рядный

Отличительная черта – рядный ТНВД можно смазывать маслом, которое находится в самой системе смазки двигателя. Устройство работает без перебоев на низкокачественном топливе.

Дистрибутивные

В таком насосе всю нагрузку берет на себя 1 или максимум 2 плунжера, гарантирующие поступление масла сразу ко всем цилиндрам двигателя.

В отличие от рядных моделей распределительные характеризуются меньшим габаритом и при этом гарантируют равномерное распределение топлива.

Дистрибутивные ТНВД положительно влияют на эксплуатационные характеристики мотора, но сами по себе недолговечны и не могут использоваться на пределе возможностей или при повышенных нагрузках.

Магистральные

Магистральные модели – самые современные, надежные и востребованные, так как для них характерен высокий уровень КПД вне зависимости от интенсивности нагрузки.

Они применятся только в двигателях с аккумуляторным впрыском и сочетают функции инжектора и нагнетателя.

Подача топлива осуществляется под максимально допустимым давлением и позволяет использовать потенциал дизельного двигателя на полную.

В зависимости от типа двигателя в комплектацию магистрального устройства включено от 1 до 3 плунжеров, приводимых в движение шайбой или кулачковым валом. При смещении плунжера за счет уменьшения давления увеличивается объем компрессионной камеры, после чего впускной клапан приоткрывается и обеспечивает регулируемую электронной панелью управления подачу топлива.

Насос ТНВД магистрального типа

Наиболее известными представителями топливных насосов являются агрегаты первого поколения производства Bosch (Бош), в рейтинге производительных и надежных моделей лидирует инновационный ТНВД для ММС Паджеро.

Особенности регулировки и ремонта

Каждый владелец авто сталкивался с тем, что двигатель начинает барахлить, причиной чему нередко является выход из строя ТНВД.

Первыми признаками необходимости обращения к специалистам являются:

  • увеличение расхода;
  • обнаружение протечек;
  • проблемы с запуском двигателя;
  • появление нетипичного дыма в процессе движения;
  • соскальзывание ремня ГРМ.

ТНВД обладают солидным ресурсом – они рассчитаны на пробег от 200 тыс.км., тем не менее, наиболее распространенная причина поломки – износ. Помимо естественных причин он возникает также при полной выработке топлива, когда насос работает на сухом запуске, поломка цепи питания, засорение фильтра грубой очистки.

При самостоятельной предварительной диагностике оцените состояние электроцепи, целостность трубопроводов, исправность предохранителя, реле, наличие контакта и напряжение на клеммах (+/- 12 В).

Давление в системе измеряется с использованием манометра – его можно подключить к штуцеру топливной рампы.

Нормальный показатель давления, нагнетаемого в первые 2-4 секунды работы насоса в зависимости от модели двигателя составляет 2,5-6 МПа.

Мы неслучайно акцентируем внимание именно на сервисном обслуживании. Устройство топливной системы, в том числе агрегатов высокого давления в ее составе, сложное и требует знания теории и наличия практики в устранении неисправностей.

Насос ТНВД и его комплектующие

  • Самостоятельно можно попробовать только отрегулировать параметры холостого хода карбюратора путем подтяжки тросов акселератора.
  • В целом для того, чтобы ТНВД вашего авто работал без перебоев как можно дольше, рекомендуем:
  • использовать только качественное, проверенное топливо;
  • своевременно проходить ТО (по мере достижения определенных производителем авто показателей пробега).

Диагностика и ремонт топливного насоса высокого давления (видео)

https://www.youtube.com/watch?v=uQr8VZ_Z8-Q

Источник: https://nasosovnet.ru/himicheskie/nasos-tnvd.html

ТНВД

За каждый цикл ТНВД должен подавать в форсунку строго определенную дозу топлива, называемую цикловой подачей. У наиболее крупных тихоходных дизелей речного флота эта доза составляет примерно 3 см3, у небольших быстроходных — 0,03 см3, причем при работе на холостом ходу цикловая подача снижается в 5—8 раз.

Топливо должно быть подано в форсунку под давлением 40—80 МПа. Для подачи малой его дозы под высоким давлением наиболее удачны поршневые насосы с поршнями небольшого диаметра (5—20 мм) при большой длине (5—8 диаметров). Такие поршни называют плунжерами.

При столь высоком давлении предотвратить утечку топлива вдоль плунжера можно лишь при минимальном зазоре между плунжером и направляющей втулкой.

Диаметральный зазор составляет 0,6—3 мкм (в зависимости от диаметра плунжера), отклонение от круглости рабочих цилиндрических поверхностей плунжера и втулки не должно превышать 0,5 мкм.

Цикловая подача зависит от нагрузки на двигатель. Изменение цикловой подачи называют регулированием наcoca. На серийном флоте встречаются насосы с регулированием момента начала подачи и насосы с регулированием момента конца, подачи.

Расстояние, которое проходит плунжер за время подачи топлива в форсунку, называют активным ходом плунжера. Полный ход плунжера в 2—3 раза больше активного, в связи с чем во время части хода топливо перепускается в полость всасывания.

В насосах с регулированием момента начала подачи перепуск топлива происходит в начале хода плунжера, а затем -отсечка и оно поступает в форсунку. Подача топлива заканчивается в момент, когда плунжер придет в верхнее крайнее положение. Если отсечка произойдет раньше, подача топлива в форсунку увеличится, а если позднее — уменьшится.

Следовательно, регулировать насос можно изменением момента отсечки топлива в начале его подачи. Конец подачи остается неизменным.

В насосах с регулированием момента конца подачи топливо нагнетается в форсунку с самого начала движения плунжера вверх. В какой-то момент происходит отсечка и топливо начинает перепускаться в полость всасывания.

При ранней отсечке в форсунку будет поступать малая его доза, а при поздней — большая. В этом случае момент начала подачи остается постоянным, а конец подачи изменяется. Отсечку топлива осуществляет клапан или золотник.

В первом случае насос называют клапанным, во втором — золотниковым.

Иногда насос регулируют с целью изменения частоты вращения или мощности двигателя. При этом цикловая подача изменяется одновременно и одинаково у насосов всех цилиндров двигателя. Такое регулирование называют общим и осуществляют единым — механизмом.

Однако может оказаться, что в один из цилиндров топлива подается больше или меньше, чем в остальные, т. е. необходимо регулировать насос лишь одного цилиндра.

В связи с этим должна быть предусмотрена возможность не только общего, но и индивидуального регулирования каждого насоса.

Принцип работы золотникового наcoca. В современных дизелях преимущественно применяют ТНВД золотникового типа. У них плунжер одновременно выполняет функции распределительного золотника. В золотниковых насосах, как правило, регулируют момент конца подачи.

У судовых дизелей целесообразнее регулировать момент начала подачи. При работе двигателя на винт цикловую подачу регулируют для изменения частоты вращения.

Так, если частота вращения, например, уменьшается, то при постоянном угле опережения будет увеличиваться опережение подачи топлива по времени. Если же цикловую подачу изменять путем изменение момента начала подачи, то опережение подачи топлива по времени может остаться постоянным.

Однако с уменьшением частоты вращения увеличивается период задержки самовоспламенения топлива и большее опережение подачи по времени оказывается, особенно у двигателей с наддувом, полезным. Этим объясняется широкое применение ТНВД с регулированием момента конца подачи.

Кроме того, такие насосы подают топливо в форсунку при увеличивающейся скорости плунжера, т. е. при нарастающем давлении, что, как известно, является желательным.

В одних золотниковых насосах можно регулировать момент начала или конца подачи, в других — обе фазы. Это достигают формой выреза плунжера.

Основной частью ТНВД является плунжерная пара (рис. 118,а), которая состоит из плунжера 2 и рабочей (плунжерной) втулки 3.

Несмотря на высокую точность (прецизионность) взаимной обработки втулки и плунжера, необходимую плотность между ними достигают только индивидуальным подбором.

Обе детали (втулка и плунжер) составляют единую плунжерную пару. При изнашивании или поломке одной из них заменяют всю пару.

В рабочей втулке 3 предусмотрены окна б (одно или два) для прохода топлива в надплунжерное пространство а, подаваемого к ТНВД из расходной цистерны.

Притертое к верхнему торцу втулки 3 седло 6 с нагнетательным клапаном 10, удерживаемым пружиной 8, закреплено в корпусе насоса (на рисунке не показан) штуцером 7.

Вырез г плунжера 2 сообщается вертикальным пазом в с надплунжерным пространством а. Верхней границей выреза г является косая кромка 11, нижней — кольцевая кромка 12.

Во время работы двигателя плунжер 2, приводимый от распределительного вала (на рисунке не изображено), перемещается вверх и вниз.

Топливо поступает в надплунжерное пространство а (рис. 118, 6, положение 1) при движении плунжера 2 вниз через окна б.

В начале движения плунжера вверх топливо вытесняется им из пространства а через окна б обратно в полость, откуда оно поступило (положение II).

Когда верхняя торцовая кромка плунжера 2 перекроет окна б (положение III), над плунжером образуется замкнутое пространство и топливо там окажется под давлением.

Как только давление превысит действие пружины 8, нагнетательный клапан 10 поднимется и топливо по трубе 9 будет поступать в форсунку. Это начало подачи топлива.

Конец подачи (отсечка), произойдет тогда, когда косая кромка 11 выреза г дойдет до верхней кромки окна б (рис. 118, 6, положение IV). С этого момента топливо из надплунжерного пространства а будет перетекать через паз в, вырез г и окно б в полость подвода топлива (положение V).

Давление в надплунжерном пространстве упадет, пружина 8 (рис. 118, а) посадит клапан 10 на седло б; поступление топлива через трубу 9 в форсунку прекратится. Перепуск топлива закончится до прихода плунжера в верхнее положение.

Затем плунжер начнет перемещаться вниз и надплунжерное пространство снова будет заполняться топливом.

Количество поданного в форсунку топлива зависит от пути s (рис. 118, в), пройденного плунжером с момента перекрытия окон б (см. положение I) до момента открытия их косой кромкой 11 выреза (см. положение II). Подачу топлива регулируют поворотом плунжера налево или направо, повернув который, как изображено в положении 3, окажется, что s1

Источник: http://privetstudent.com/referaty/referaty-transport/280-tnvd.html

Управление работой дизельного двигателя часть1

Требования к системе впрыска топлива

Требования
Топливный насос высокого давления (ТНВД) должен подавать топливо под давлением 350… 1600 бар — в соответствии с особенностями процесса сгорания дизельного топлива — с максимальной точностью дозирования циклов впрыска для достижения оптимального состава рабочей смеси. Начало впрыска должно быть точно установлено по времени в пределах около ±1° поворота коленчатого вала для достижения оптимума между расходом топлива, выбросом токсичных компонентов с отработавшими газами и уровнем шума. Муфта опережения вспрыскивания позволяет уточнять начало впрыскивания и компенсировать продолжительность распространения волн сжатия в топливопроводах реагированием на изменение частоты вращения и опережения начала закрытия отверстия насоса (действительное начало подачи топлива насосом). Механические системы включают муфту опережения впрыскивания для учета изменений частоты вращения коленчатого вала двигателя. Винтовая кромка плунжера ТНВД позволяет путем его поворота изменять цикловую подачу топлива в зависимости от нагрузки. Для управления нагрузкой и частотой вращения коленчатого вала дизеля используется только изменение цикловой подачи топлива; количество воздуха на впуске не дросселируется. Так как дизель на малых нагрузках при увеличении цикловой подачи топлива может увеличивать частоту вращения, превышающую допустимую, важно иметь устройство, ограничивающее это увеличение. Необходимо также иметь регулятор частоты вращения на режиме холостого хода.

Процесс впрыскивания
При рассмотрении процесса впрыскивания топливо нельзя считать несжимаемым. Процессы, сопутствующие впрыскиванию, следует рассматривать как динамические (в основном, отражающие акустические принципы). Кулачковый вал ТНВД, приводимый от коленчатого вала двигателя, перемещает плунжеры топливного насоса, обеспечивая подачу топлива и создавая высокое давление в топливопроводах. Нагнетательный клапан открывается при повышении давления и волна давления проходит в направлении сопла форсунки со скоростью звука (приблизительно 1400 м/с). По достижении требуемого давления запорная игла рабочего сопла форсунки преодолевает усилие пружины, открывая проходное сечение, и топливо подается через распылительные отверстия в камеру сгорания двигателя. Процесс впрыскивания заканчивается с открытием сливного отверстия в гильзе плунжера. Давление в надплунжерной полости уменьшается, нагнетательный клапан закрывается и давление в топливопроводе снижается до пределов, выбираемых из следующих условий: запорная игла форсунки должна закрываться мгновенно, исключая утечку топлива; колебательные явления в топливопроводах не должны вызывать повторного открытия иглы и становиться причиной кавитационного разрушения.

Система впрыскивания топлива

Система впрыскивания топлива предна- значена для точного дозирования топли- ва при различных режимах работы. Она включает в себя топливный бак, топлив- ный фильтр, топливоподкачивающий на- сос, перепускной клапан и топливные трубопроводы. Давление топлива, требу- емое для впрыскивания, создается ТНВД, откуда топливо подается через нагнета- тельный клапан по топливным трубопро- водам высокого давления к форсункам. 

Топливный насос высокого давления
В ТНВД автомобильных дизельных двигателей, главным образом, используется одна из следующих систем впрыскивания топлива: насос с рядным расположением плунжерных пар и насос распределительного типа. В насосе с рядным расположением плунжерных пар, широко применяемом на двигателях большегрузных автомобилей, кулачковый вал приводит в действие один плунжер, подающий топливо только к одному цилиндру двигателя. Другая конструкция ТНВД с рядным расположением плунжерных пар может регулировать фазы впрыскивания в дополнение к изменению количества топлива. Насос распределительного типа характеризуется механическим или электронным регулятором и интегральным устройством, управляющим углом опережения впрыскивания. Одноплунжерный насос распределительного типа с вращающимся плунжером обычно применяется для высокооборотных двигателей легковых автомобилей и малотоннажных грузовиков. Центральный плунжер, приводимый в движение от кулачкового диска, создает давление и распределяет топливо по отдельным цилиндрам, а дозатор или электромагнитный клапан регулирует количество впрыскиваемого топлива. Насос распределительного типа с радиальным расположением плунжерных пар встречаются на дизелях с высокой частотой вращения коленчатого вала для легковых автомобилей и малотоннажных грузовиков с непосредственным впрыскиванием топлива. Элементы насоса в обоих типах систем изготавливаются с высокой точностью для обеспечения продолжительного срока службы и стабильности работы, точного регулирования момента отсечки и количества впрыскиваемого топлива, а также равномерности дозирования по отдельным цилиндрам. Имеются также насосы с рядным расположением плунжерных пар и распределительного типа, приводимые в действие от кулачкового вала двигателя. Другой концепцией впрыскивания топлива представляется система насос-форсунка, в которой насос и форсунка объединены в один узел. Насос-форсунка устанавливается в головке каждого цилиндра. Устройство приводится распределительным валом двигателя, непосредственно толкателем или косвенно при помощи коромысла (рокера). Система впрыскивания топлива с общим нагнетательным топливным трубопроводом (аккумулятором) позволяет разделить функции создания давления и впрыскивания.

Топливные фильтры
Качество фильтра и соответствие необходимой степени очистки оказывают решающее влияние на долговечность системы впрыскивания топлива. Наиболее важный компонент топливного фильтра — фильтрующий элемент — состоит из гидрофобного бумажного элемента; свернутого по спирали в целях получения максимальной площади фильтрующей поверхности, что повышает грязеемкость фильтра. Эффективность фильтрования, главным образом, определяется пористостью бумаги, ее массой и типом используемых волокон. В системах с насосами распределительного типа используются фильтры со средним размером пор 4…5 мкм, хотя с другими типами насосов могут использоваться фильтры с размером пор 8… 10 мкм. Фильтры для дизельных систем впрыскивания топлива могут быть линейные (только насосы VE) или типа патрона (состоящие из кожуха фильтра и ввинчиваемого сменного патрона). Полностью линейный фильтр или фильтр с патроном должны заменяться, когда истекает установленный срок обслуживания (> 30 тыс. км). Фильтры для насосов VE включают специальные отстойники для сбора содержащейся в топливе влаги, которая собирается на стороне загрязнения бумаги фильтра и затем просачивается на чистую сторону. Измерительный датчик сигнализирует о достижении максимально допустимого уровня воды. Для удаления воды используется дренажная пробка. Также в фильтре может устанавливаться электрический обогреватель в целях предупреждения каких-либо помех, вызываемых загущением парафиновых составляющих топлива при низких температурах. 

Насосы с рядным расположением плунжерных пар

Подкачивающий насос 
Плунжерный насос подает топливо к ТНВД под давлением порядка 1….2,5 бар. Плунжер подкачивающего насоса, приводимый в действие от распредели- тельного кулачка, при каждом такте перемещается в верхнюю мертвую точку. Возвратное движение осуществляется пружиной во время обратного такта — происходит впуск топлива. Чем больше давление в топливопроводе, тем меньше ход плунжера, подающего топливо. 

Насос с рядным расположением плунжерных пар: 1- втулка нагнетательного клапана: 2 — опорный торец пружины: 3 — нагнета- тельный клапан: 4 — втулка плунжера: 5 — плунжер насоса; 6 — рычаг со сфери- ческой головкой; 7 — управляющая рейка; 8 — поворотная втулка; 9 — управляющий пояс плунжера: 10 — пружина плунжера: 11 — седло пружины: 12 — роликовый тол- катель; 13 — кулачковый вал

Топливный насос высокого давления
Каждый насос высокого давления с рядным расположением плунжеров имеет плунжерную пару для каждого цилиндра двигателя. Приводимый в движение двигателем кулачковый вал вызывает движение плунжера, повышающего давление топлива. Возврат его в первоначальное положение осуществляется пружиной. Плунжер подгоняется к втулке с такой точностью (зазор составляет 3…5 мкм), что он фактически работает без утечек даже при высоком давлении и на любых частотах вращения коленчатого вала двигателя. Рабочий ход плунжера является постоянным.


Регулирование подачи топлива в ТНВД с рядным расположением плунжерных пар: 
1 — из топливного канала: 2 — к форсунке: 3 — втулка: 4 — плунжер: 5 — нижняя регулирующая спиральная выемка: 6 — вертикальная канавка
Количество подаваемого топлива регулируется посредством поворота плунжера — спиральная выемка изменяет его действительный рабочий ход. Активная работа насоса начинается, когда верхняя кромка плунжера закрывает впускное отверстие. Прорезь соединяет камеру выше плунжера с зоной ниже пространственной спиральной выемки.


ТНВД с рядным расположением плунжерных пар с механическим регулятором (центробежного типа):
1- топливный бак: 2 — регулятор: 3 — то- пливоподкачивающий насос; 4 — ТНВД; 5 — муфта опережения впрыскивания: 6 — привод от двигателя; 7 — топливный фильтр: 8 — перепускной канал: 9 — фор- сунка: 10 — линия возврата топлива; 11- пиния избыточного потока

Для регулирования подачи топлива используются плунжеры с различными типами спиральных канавок. В плунжерах только с нижней спиральной канавкой начало подачи топлива всегда происходит при том же такте сжатия, а при вращении плунжера может изменяться опережение или запаздывание впрыска топлива. При верхнем расположении спиральной канавки изменяется начало впрыска топлива. Имеются также плунжеры с верхним и нижним расположением спиральных канавок. Для ТНВД используются следующие типы нагнетательных клапанов: клапан с объемной разгрузкой; клапан-дроссель обратного хода: клапан постоянного давления.

Штуцер ТНВД с нагнетательным клапаном:
 а- с клапаном объемного течения и ог- раничением обратного течения: Ь — с клапаном постоянного давления; 1 — корпус нагнетательного клапана: 2 — обратный клапан: 3 — промежуточный объем: 4 — разгрузочный поясок; 5 — сфе- рический клапан; 6 — втулка клапана; 7 — нагнетательный клапан; 8 — жиклер; 9 — обратный клапан

Для ряда случаев применяются специально разработанные нагнетательные клапаны постоянного давления, которые используются в целях гашения волновых явлений при отражении от сопла форсунки, предупреждая, таким образом, повторное впрыскивание топлива. Клапан постоянного давления используется для поддержания стабильных гидравлических характеристик в системах впрыска топлива высокого давления и в небольших двигателях непосредственного впрыска, работающих на высоких частотах вращения коленчатого вала. В ТНВД, в которых средние величины давлений впрыскивания достигают 600 бар (например, в ТНВД размерностью М, А), плунжерно-втулочный комплект устанавливается в корпусе насоса. В насосах с давлением впрыскивания топлива, превышающим 600 бар, плунжерно-втулочный комплект, нагнетательный клапан и втулка нагнетательного клапана образуют единое устройство в целях исключения высоких усилий на корпусе насоса (например, в ТНВД размерностью MW, Р). ТНВД с рядным расположением плунжерных пар и присоединенный к нему регулятор подсоединяются к системе смазки двигателя. 

Регулирование частоты вращения
Существуют регуляторы, поддерживающие заданные частоты вращения коленчатого вала двигателя, например, на холостом ходу или всережимные регуляторы, действующие в диапазоне между холостым ходом и максимальной частотой вращения. Есть регуляторы, управляющие режимом топливоподачи при полной нагрузке в зависимости от частоты вращения коленчатого вала, давлением воздуха, а также использующиеся для подачи дополнительного количества топлива, необходимого при пуске двигателя. Регулятор устанавливает количество подаваемого топлива посредством изменения положения рейки топливного насоса.

Характеристики работы регулятора:

а — прямая коррекция момента ;
b — нерегулируемый диапазон; 
с — обратная коррекция крутящего момента; 1 — установочная точка частоты вращения на холостом ходу; 2 — внешняя скоростная характеристика; 3 — внешняя скоростная характеристика двигателя с турбонаддувом; 4 — внешняя скоростная характеристика двигателя без турбонаддува; 5 — внешняя скоростная характеристика двигателя без турбонаддува с относительной компенсацией; 6 — промежуточный контроль частоты вращения коленчатого вала двигателя; 7 — количество топлива для запуска 

Механические (центробежные) регуляторы
Такие регуляторы приводятся во вращение от кулачкового вала ТНВД. Грузы под действием центробежных сил, преодолевая усилия пружины регулятора, воздействуют посредством системы рычагов на рейку насоса. Центробежная сила и сила упругости пружины находятся в состоянии равновесия, устанавливая рейку в положение, соответствующее подаче топлива для заданной мощности. Уменьшение частоты вращения при повышении нагрузки приводит к соответствующему уменьшению центробежной силы, и пружина регулятора перемещает вращающиеся грузы, а вместе с ними и рейку насоса в направлении повышения количества подаваемого топлива до тех пор, пока не восстановится равновесие.


Регулятор типа RQ: 1 — плунжер насоса; 2 — рейка насоса; 3 — остановка при полной нагрузке; 4 — регулирующий рычаг; 5 — кулачковым вал ТНВД; 6 — вращающиеся грузы; 7 — пружина регулятора; 8 — скользящий шток

Всережимные регуляторы 
Они поддерживают фактически постоянную частоту вращения в соответствии с положением рычага управления. Применяются в дизелях грузовых автомобилей, строительной техники, тракторов.


Регулятор типа RSV: 1 — плунжер насоса; 2 — рейка насоса; 3 — ограничитель максимальной частоты вращения; 4 — рычаг управления; 5 — пружина пуска; 6 — шток остановки двигателя: 7 — пружина регулятора; 8 — вспомогательная пружина режима холостого хода; 9 — кулачковый вал ТНВД; 10 — центробежные грузы; 11 — шток; 12 — пружина регулирования крутящего момента; 13- ограничитель полной нагрузки

Двухрежимные регуляторы (минимальной и максимальной частот вращения)
Этот тип регулятора эффективен только на холостом ходу, когда двигатель достигает максимальных оборотов. Крутящий момент между этими крайними величинами определяется положением педали управления подачей топлива.


Комбинированные регуляторы
Комбинированные регуляторы представляют собой синтез двух описанных выше типов регуляторов. В зависимости от специфики использования, активный контроль может осуществляться как в верхнем, так и в нижнем диапазонах частот вращения коленчатого вала двигателя. 

Типы регуляторов
Регуляторы типа RQ и RQV включают работу центробежных масс, которые действуют на пружину регулятора; движения рычага управления изменяются в соответствии с передаточным отношением точки опоры рычага. В регуляторах типа RSV и RSF пружина регулятора находится вне вращающихся масс, поэтому передаточное отношение в точке опоры рычага остается в основном постоянным. 

Уменьшение частоты вращения 
Работа регулятора характеризуется степенью неравномерности частоты вращения 6: 

6= (nLO — nVO)/nVO * 100% 

где nLO — верхняя безнагрузочная частота вращения; 
nVO — верхняя полнонагрузочная частота вращения коленчатого вала. Чем меньше разность между nLO и nVO, тем меньше снижение частоты вращения, другими словами — тем выше степень точности, с которой регулятор поддерживает конкретную частоту вращения коленчатого вала. Всережимные регуляторы, устанавливаемые на небольших высокооборотных двигателях, позволяют поддерживать частоту вращения коленчатого вала в пределах 6…10%. 

Дополнительное оборудование
Регулирование крутящего момента 
Вспомогательная пружина (пружина регулирования крутящего момента) точно подстраивается на режим работы двигателя, обеспечивая необходимую подачу топлива на режиме полной нагрузки, только при немного пониженных показателях. При достижении заданной частоты вращения коленчатого вала пружина сжимается и вызывает перемещение рейки насоса в направлении уменьшения цикловой подачи (положительный контроль крутящего момента). Также возможен отрицательный контроль, который соответствует повышенной частоте вращения коленчатого вала двигателя посредством увеличения количества подаваемого топлива. 


Компенсатор давления во впускном патрубке (LDA): 1 — подсоединение усилителя давления;
2 — диафрагма

Компенсатор давления во впускном патрубке (LDA) 
В дизелях с турбонаддувом необходимо повышать цикловую подачу топлива. Для повышения крутящего момента подпружиненная диафрагма увеличивает топливоподачу при возрастании давления наддува при полной нагрузке. Диафрагма воздействует на рейку насоса, к которой она подсоединяется, в целях обеспечения соизмеряемого увеличения количества подаваемого топлива. 


Компенсатор абсолютного давления (ADA):
1 — мембранный датчик давления; 2 — соединение с атмосферой

Компенсатор абсолютного давления (ADA) 
Такой компенсатор подобен компенсатору LDA. Он уменьшает цикловую подачу топлива на полной нагрузке в случае снижения атмосферного давления (в высокогорных условиях). Мембранный датчик давления смещает рейку насоса в направлении снижения цикловой подачи, как только уменьшается атмосферное давление. 

Устройство пуска, учитывающее температуру:
1 — рейка насоса; 2 — механизм прекра- щения пуска двигателя, действующий с помощью элемента расширения

Устройство холодного пуска (TAS) 
Двигатель в холодном состоянии для нормального пуска требует увеличенной цикловой подачи топлива. При высоких температурах атмосферного воздуха и прогретом двигателе обогащение смеси может привести к повышенной дымности отработавших газов. В этих условиях применяется устройство холодного пуска (ТАS), использующее термодатчик для предупреждения переобогащения смеси во время пуска прогретого двигателя. 


Датчик перемещения рейки (RWG): 
1 — пластинчатый стальной сердечник; 2 — контрольная катушка; 3 — фиксированное кольцо закорачивания; 4 — рейка насоса; 5 — измерительная катушка; 6 — подвижное кольцо закорачивания 

Датчик перемещения рейки (RWG) 
В датчике RWG применяются индукционные катушки. После обработки данных сигнал используется для выполнения управления механической или гидравлической коробкой передач, обеспечения более низких величин расхода топлива, рециркуляции отработавших газов и диагностики. 


Датчик закрытия отверстия (FBG): а — измерение с помощью преобразователя;
b- позиция блокировки; 1 — кулачковый вал насоса: 2 — измерительный датчик; 3 — блокирующий штырь

Датчик закрытия отверстия (FBG) 

Датчик FBG представляет собой индукционное устройство для управления двигателем при помощи закрытия отверстия ТНВД. 


Устройство синхронизации (положение отключения)

Устройство опережения впрыскивания 
Размещается на приводе между двигателем и ТНВД. Центробежные грузы реагируют на повышающуюся частоту вращения коленчатого вала двигателя посредством поворота кулачкового вала ТНВД по отношению к ведущему валу в направлении «опережения подачи». 

Выключение работы насоса 
Используется механическое (рычаг остановки), электрическое или пневматическое устройство для остановки дизеля прекращением подачи топлива. 

Электронный регулятор (EDC)
Вместо регулятора центробежного типа может использоваться электронный регулятор для ТНВД с рядным расположением плунжерных пар, в котором имеется соленоидный привод с бесконтактным индуктивным датчиком, определяющим положение рейки насоса. Соленоидный исполнительный механизм приводится в действие с помощью ECU, который сравнивает положение дроссельной заслонки, частоту вращения и некоторое число дополнительных факторов с рабочими характеристиками с целью определения правильного количества подаваемого топлива (выражаемого как функция положения рейки). С помощью электронного контроллера сравнивается положение рейки насоса с конкретной точкой для определения значения тока возбуждения соленоида, который сжимает возвратную пружину. Когда отклонения определяются, регулируется ток возбуждения, обеспечивая смещение рейки насоса к более точному положению. Индуктивный измерительный преобразователь частоты вращения коленчатого вала управляет положением колеса, устанавливаемого на кулачковом валу; ECU использует импульсные интервалы для вычисления частоты вращения коленчатого вала двигателя. Преимущества электронного регулятора: двигатель может пускаться и останавливаться при помощи ключа зажигания; свободный выбор внешних скоростных характеристик; максимальное количество впрыскиваемого топлива точно скоординировано с давлением наддува для соблюдения норм на дымность отработавших газов; возможность корректировки в зависимости от температур воздуха и топлива; обогащение смеси во время пуска; контроль частоты вращения коленчатого вала двигателя для вспомогательных устройств; средство управления движением на маршруте; регулирование максимальной скорости движения автомобиля; стабилизация частоты вращения на холостом ходу двигателя; регулирование силы тяги (ASR) при автоматической коробке передач; передача сигнала для тахометра и дисплея расхода топлива; интегральная диагностика отказов. 

Лучший топливный насос для впрыска дизельного топлива — Отличные предложения на насос для впрыска дизельного топлива от глобальных продавцов насосов для впрыска дизельного топлива

Отличные новости !!! Вы попали в нужное место для инжекторного насоса для дизельного топлива. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот топливный насос высокого давления для форсунок станет одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели топливный инжекторный насос на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в топливном инжекторном насосе высокого давления и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. , а также ожидаемую экономию.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз.Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress.Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы согласитесь, что вы получите инжекторный насос для дизельного топлива по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

VE PUMP, топливный насос, дизельный топливный насос, дизельный топливный насос

VE PUMP, топливный насос, дизельный топливный насос, дизельный топливный насос
Список продуктов VE Pump
Bosch NO. Модель автомобиля Bosch NO. Модель автомобиля
0460 406 003 VE6 / 10F2400L32 0460 494 122 VE4 / 9F2400R125
0460 414 030 VE4 / 11F2250R229 0 460 494 131 VE4 / 9F2400R138
0460 414 059 VE4 / 11F2100R286-1 0460 494 144 VE4 / 9F2300L157
0460 414 178 VE4 / 11F2000R790 0 460 494 158 VE4 / 9F2075R180
0460 484006 VE4 / 8F2500R61 0460 494 160 VE4 / 9F2200R183
0460 484014 VE4 / 8F2300R171-1 0 460 494 174 VE4 / 9F2300R215
0460 484019 VE4 / 8F2150R316 0 460 494 184 VE4 / 9F2250R149-3
0460 484023 VE4 / 8F2500R335 0460 494 204 VE4 / 9F2300R255
0460 484038 VE4 / 8F2150R403 0 460 494218 VE4 / 9F2400R299
0460 484 051 VE4 / 8F2300R463 0 460 494 244 VE4 / 9F2300R54
0460 494006 VE4 / 9F2200R24 0 460 494 252 VE4 / 9F2250R328-2
0460 494024 VE4 / 9F2100R22-3 0 460 494 263 VE4 / 9F2300R54-2
0460 494027 VE4 / 9F2250R41 0 460 494 267 VE4 / 9F2250R328-5
0460 494039 VE4 / 9F2100R48 0 460 494 278 VE4 / 9F2250R445
0460 494044 VE4 / 9F2300R54 0 460 494 286 VE4 / 9F2300R433
0460 494 052 VE4 / 9F2400R66-3 0460 494 304 VE4 / 9F2100R466
0460 494055 VE4 / 9F2250R41P 0460 494 317 VE4 / 9F2050R476
0460 494 062 VE4 / 9F2250R78 0460 494 370 VE4 / 9F2250R445-3
0460 494090 VE4 / 9F2100R87 0 460 494 384 VE4 / 9F2250R513-3
0460 494 105 VE4 / 9F2400R95
Denso No. Модель автомобиля Denso № Модель автомобиля
096000-0121 VE4 / 10E2300R012 096000-5240 VE4 / 10F2400R524
096000-0510 VE4 / 9F1900R051 096000-5270 VE4 / 10F2500R527
096000-0511 VE4 / 9F1200R051 096000-5390 VE4 / 10F2400R539
096000-0651 VE4 / 9F2200R065 096000-5790 VE4 / 9F2250R579
096000-0670 VE4 / 9F2350R067 096000-5880 НП-ВЭ4 / 10F2500R588
096000-1270 VE4 / 9F2350R127 096000-5950 VE4 / 10F2100R595
096000-1601 VE4 / 9F2250R160 096000-5960 VE4 / 1042100R596
096000-2300 VE4 / 9F2500R230 096000-5970 VE4 / 10F2200R597
096000-2460 VE4 / 9F2500R246 096000-6072 VE4 / 10F2100R607
096000-2990 VE4 / 9F1200R299 096000-6250 VE4 / 10F2100R625
096000-3190 VE4 / 9F2200R319 096000-6730 VE4 / 10F2500R673
096000-3390 VE4 / 9F2400R339 096000-6940 VE4 / 10F2400R694
096000-3400 VE4 / 9F2400R340 096000-7090 VE4 / 10F2400R709
096000-3600 VE3 / 9F2500L360 096000-7120 VE4 / 9F2250R712
096000-3740 VE4 / 9F2500R374 096000-7161 VE4 / 9F2250R716
096000-3850 VE4 / 9F2450R385 096000-7240 VE4 / 10F2100R724
096000-3980 НП-ВЭ4 / 9F2400R398 096000-7610 VE4 / 10F2300R761
096000-4320 VE4 / 10F2500R432 096000-7691 VE4 / 9F2250R769
096000-4330 VE4 / 10F2500R433 096000-7850 VE4 / 10F2750R785
096000-4340 VE4 / 10F2500R434 096000-8102 VE4 / 10F2250R810
096000-4420 VE4 / 9F2250R442 096000-8104 VE4 / 10F2250R810
096000-4460 VE4 / 9F2250R446 096000-8914 VE4 / 10F2250R891
096000-4490 VE4 / 9F2250R449 096000-9330 VE4 / 10F2500R933
096000-4640 VE4 / 12F1800R464 096000-9340 VE4 / 10F2500R934
096000-4910 VE4 / 10F2100R491 096500-0052 VE4 / 9F2200R005
096000-5170 VE4 / 10F2400R517 096500-0090 VE4 / 10F2200R009
096000-5220 VE4 / 10F2400R522 096500-0100 VE4 / 10F2200R010
ZEXEL NO. Модель автомобиля ZEXEL NO. Модель автомобиля
104600-2004 VE4 / 10F2500L8 104648-0470 VE4 / 8F2325R1354
104601-1050 VE4 / 11F1800R23 104648-2180 VE4 / 8F2500L164
104601-2007 VE4 / 11F2050R6 104648-2410 VE4 / 8F2500L374
104601-2015 VE4 / 11F2050R7 104648-2600 VE4 / 8F2500L614
104601-2043 VE4 / 11E2050R20 104648-2620 VE4 / 8F2500L739
104640-0820 VE4 / 10F2150L 1493 104648-2720 VE4 / 8F2500L642
104640-1791 VE4 / 9F2500R389 104649-0330 VE4 / 9F2350R356
104640-1832 VE4 / 10F2200R610 104649-0421 VE4 / 9F2150R809
104640-2111 VE4 / 10F2400R637 104649-0432 VE4 / 9F2150R810
104640-2120 VE4 / 10F2400R705 104649-0451 VE4 / 9F2150R807
104640-2154 VE4 / 10F2500L852 104649-0490 VE4 / 9F2150R957
104640-2156 VE4 / 10F2500L852 104649-0492 VE4 / 9F2150R957
104640-2157 VE4 / 10F2500R852 104649-2052 VE4 / 9F2500R52
104640-2185 VE4 / 10F2500L865 104649-2062 VE4 / 9F2200R192
104640-2273 VE4 / 10F2500L923 104649-2190 VE4 / 9F2500R359
104640-2383 VE4 / 10F2500L979 104649-2200 VE4 / 9F2500R360
104640-2416 VE4 / 10F2500L1014 104649-2311 VE4 / 9F2300R454
104640-2422 VE4 / 10F2500R1015 104649-2480 VE4 / 9F2500R749
104640-2423 VE4 / 10F2500L1015 104649-5080 VE4 / 9F2250R220
104640-2481 VE4 / 10F2400L 1095 104660-2001 VE6 / 10F2500R1
104640-2660 VE4 / 10F2500L1015 104660-2091 VE6 / 10F2500R1
104640-2762 VE4 / 10F2050R1527 104660-2311 VE6 / 10F2500R42
104640-2810 VE4 / 10F2500L1142 104660-2441 VE6 / 10F2500R49
104640-3050 VE4 / 10F2100R148 104660-2450 VE6 / 10F2500R60
104640-3060 VE4 / 10F2100R149 104660-2470 VE6 / 10F2500R100
104640-3160 VE4 / 10F2100R149 104660-2471 VE6 / 10F2500R100
104640-3271 VE4 / 10F2100R258 104660-2482 VE6 / 10F2500R101
104640-3281 VE4 / 10F2100R264 104660-2483 VE6 / 10F2500R101
104640-3362 VE4 / 10F2100R431 104669-2112 VE6 / 9F2500R40
104640-7420 VE4 / 10F2150R893 104740-7190 VE4 / 10F1800R771
104640-7500 VE4 / 10F2150R914 104740-7600 VE4 / 10F1800R985
104640-9601 VE4 / 10F2050R933 104745-4060 VE4 / 10F2000L 1098
104640-8220 VE4 / 10F2100R985 104745-4160 VE4 / 10F2000L1123
104640-8870 VE4 / 10F2100R1130 104745-4180 VE4 / 10F1800R1141
104640-9675 VE4 / 10F2150R600 104745-9150 VE4 / 10F2000L1434
104640-9693 VE4 / 10F2150R602 104748-0153 VE4 / 8F2125R207
104641-3212 VE4 / 11F2000R1199 104748-0230 VE4 / 8F2125L335
104641-6890 VE4 / 11F1900R932 104749-7010 VE4 / 9F2025R769
104648-0154 VE4 / 8F2125R207 104749-7130 VE4 / 9F2025R1171
104648-0158 VE4 / 8F2125R207 104749-7310 VE4 / 9F2000R2019
104648-0452 VE4 / 8F2125R1219 196000-1383 VE4 / 10F2300R138
104648-0454 VE4 / 8F2125R1219

Все названия производителей, номера, символы и описания используются только для справочных целей, и это не означает, что какая-либо часть из перечисленных является продуктом этих производителей.

Адрес: 35 #, Qixia Road, район Гулоу, город Фучжоу, провинция Фуцзянь, Китай
Тел: + 86-594-2552566 Факс: + 86-594-2552566 ПК: 350003
WhatsApp: +86 13850261121 Эл. Почта: [email protected]
Copyright © ChenChen Diesel Parts Plant Все права защищены

Дизельный топливный насос Roosa Master


1947

Ранние образцы ТНВД распределительного типа для управления частотой вращения двигателя


Роторный насос для впрыска дизельного топлива распределительного типа помог сделать более компактные высокоскоростные дизельные двигатели конкурентоспособными по стоимости с бензиновыми двигателями и открыл рынки для дизельных двигателей в сельском хозяйстве, морских силовых установках и производстве электроэнергии.

Механический впрыск нагнетает топливо через форсунку в цилиндры дизельного двигателя под гидравлическим давлением 2 000 фунтов на квадратный дюйм или более. Впрыскивающий насос Roosa Master был первым распределительным насосом, который обеспечил простой механизм управления скоростью генераторных установок, тем самым уменьшив его сложность и количество деталей. Насос сочетает в себе одноцилиндровую насосную систему с противоположным плунжером для подачи во все цилиндры многоцилиндрового двигателя с концепцией дозирования на входе.Этот метод действия плунжера уменьшает размер и вес системы распределительных валов с рядным расположением вала.

Roosa Master был произведен компанией Hartford Machine Screw Company (ныне Stanadyne), которая была основана в 1876 году Кристофером Спенсером для производства винтов и других крепежных деталей на автоматической винтовой машине Hartford. Компания начала производить детали для самолетов вскоре после того, как Pratt & Whitney в 1925 году выпустила двигатель воздушного охлаждения для Wasp.

Роторный распределительный насос высокого давления для дизельного топлива был изобретен Верноном Роузой в 1941 году.Эрнест Дж. Уилсон был инженером-разработчиком, а Леонард Бакстер помогал. Концепция топливного насоса Roosa привлекла внимание компании в 1947 году, когда Roosa находился в Нью-Йорке, ремонтируя и обслуживая дизель-электрические генераторные установки. В июне Роза и Уилсон отправились в Хартфорд, чтобы разработать концепцию насоса, а к 1952 году — первый контракт.


Ориентир Расположение

Stanadyne Auto Corp.
Подразделение дизельных систем
92 Дирфилд Роуд
Виндзор, CT 06095

Информация для посетителей

График работы: пн-пт 8-4: 30

Церемония записки

апрель 1988

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *