Устройство насос форсунки дизельного двигателя: Система питания дизельного двигателя насос-форсунка.

Содержание

Форсунка дизельная — устройство и разновидности


История изобретения и совершенствования


Первые модели дизельного двигателя, разработанные и изготовленные в конце позапрошлого века при непосредственном участии Рудольфа Дизеля, предусматривали наличие так называемой компрессорной форсунки и применение в качестве топлива керосина. Появление ТНВД позволило использовать намного более компактные и удобные бескомпрессорные форсунки.

Особенно удачной оказалась модель инжектора, созданная в 20-х годах прошлого века Робертом Бошем. Этот вариант дизельной форсунки с незначительными доработками и усовершенствованиями применяется до настоящего времени. Конечно же, эксплуатационные и технические параметры современных деталей, несмотря на общую схожесть конструкции, существенно превосходят разработки Боша, что объясняется значительным улучшением качества и точности изготовления, а также использованием в процессе производства новейших сталей и сплавов.

Ключевым усовершенствованием форсунки стало активное применение разнообразной электроники. Использование датчиков контроля и управления работой дизельного двигателя в целом и его отдельных узлов позволяет заметно повысить КПД и эффективность эксплуатации транспортного средства.

Устройство

В настоящее время продолжает активно использовать большое количество различных по конструкции и принципу действия типов дизельных форсунок. Несмотря на определенные особенности каждого из них, можно выделить несколько общих элементов или деталей, в том или ином виде присутствующих практически всегда. К ним относятся:

· корпус, в котором размещаются остальные детали и элементы дизельной форсунки;

· распылитель в виде иглы. Предназначение детали очевидно и заключается в распределении топлива в пространстве над поршнем;

· стержень или плунжер, который движется внутри корпуса форсунки, за счет чего нагнетается необходимый уровень давления;

· пружина запирания иглы. Используется для фиксации иглы в нужном положении;

· штуцер подвода топлива. Предназначен для подачи горючего в форсунку;

· управляющий клапан. Применяется для эффективного решения двух главных задач – дозировки топлива и определения регулярности его впрыскивания в камеру сжигания;

· фильтр очистки топлива. Один из элементов общей системы очистки используемого в дизельном двигателе горючего;

· штуцер обратного отвода излишков топлива. Назначение этого элемента форсунки также предельно очевидно – он применяется для того, чтобы отвести из форсунки топливо, не попавшее в камеру сжигания.

Устройство современных дизельных форсунок предусматривает обязательное наличие электронного блока управления. Входящие в него приборы и датчики в автоматическом режиме регулируют процессы, протекающие в рассматриваемом механизме, обеспечивая эффективную работу как инжектора, так и двигателя в целом.

Принцип работы дизельных форсунок и частые неисправности

Начнем с того, что большинство форсунок для дизеля (за исключением насос-форсунок и систем Cоmmon Rail) устроены и работают по схожему принципу. Это значит, что их ремонт также предполагает похожие действия. Для лучшего понимания начнем с принципов работы.

Подача топлива на форсунки в дизелях реализована посредством его нагнетания под высоким давлением. Такое давление на каждую форсунку создает:

  • топливный насос высокого давления ТНВД;
  • насос-форсунки сами сжимают и впрыскивают топливо;
  • в системах Cоmmon Rail давление топлива поддерживается постоянно в специальном «аккумуляторе» высокого давления;

Теперь давайте рассмотрим работу наиболее распространенной системы питания с обычным ТНВД. Если просто, такой насос имеет механический привод и вращается от двигателя. Вращение шкива ТНВД позволяет плунжерным парам в устройстве насоса сильно сжимать дизельное топливо и выдавать давление около 300 кг/см². Затем происходит распределение дизтоплива на форсунки, что соответствует тактам работы двигателя.

Топливо поступает от насоса по магистралям высокого давления к форсунке, установленной на каждом цилиндре, после чего проходит через отдельный канал и оказывается внутри дизельной форсунки (в полости распылителя). Внутри распылителя конструктивным элементом является специальная конусная игла. Такая игла форсунки снизу притирается к седлу с очень большой точностью. Сверху иглу прижимает пружина. Указанная пружина давит на иглу через отдельную шайбу.

Шайба может иметь разную толщину, что определяет степень давления пружины на иглу. По этой причине шайбу называют регулировочной, так как от давления пружины будет зависеть и давление топлива, от которого сработает игла форсунки.

Срабатывание иглы происходит в результате того, что внутри форсунки накапливается нагнетаемое ТНВД топливо. Если иначе, когда горючее доходит до конуса иглы, дальнейший проход солярки становится невозможным, так как канал перекрыт иглой, плотно прижимаемой к седлу усилием пружины.

Однако ТНВД продолжает работать и нагнетать топливо, происходит рост давления, которое в определенный момент становится сильнее давления пружины. В результате игла приподнимается, горючее проходит в пространство между седлом и конусом иглы, попадает под высоким давлением в отверстия распылителя и далее происходит впрыск распыленного топливного заряда.

Время впрыска зависит от того, когда давление топлива внутри форсунки понизится до такой степени, чтобы пружина снова прижала иглу к седлу. Получается, канал для выхода топлива перекрывается, давление снова начнет расти и процесс повторяется.

Синхронная работа всего механизма предполагает точный впрыск топлива в цилиндре, в котором поршень приближается к ВМТ. Следующий впрыск в этом цилиндре в заданный момент будет возможен только при условии того, что игла закроется своевременно, то есть сразу после того, как давление топлива упадет.

Неисправности, которые могут привести к проблемам закрытия иглы после впрыска, не позволяют растущему давлению топлива снова открыть иглу строго в момент приближения поршня в ВМТ. В результате момент впрыска нарушается, дизельный двигатель начинает троить, функционировать с перебоями и т.д.

Например, если впрыск произойдет раньше, процесс сгорания топлива в цилиндре нарушается, дизель громко и жестко работает. Более того, значительно усиливается износ не только ДВС, но и проблемной форсунки.

Дело в том, что через неплотно закрытое седло происходит прорыв газов, механизм разрушается, подвергается сильному загрязнению от скопления нагара. На начальном этапе нагар удаляют путем промывки форсунок дизельного двигателя, то есть без ремонта.

При этом важно понимать, что нагарообразование является не причиной, а только результатом неполадок внутри самой форсунки. Другими словами, необходимо решать проблему точного срабатывания иглы, усилия пружины и эффективного перекрытия седла.

Рабочие стадии

Эксплуатация дизельной форсунки предусматривает циклическое и последовательное повторение 4 рабочих стадий. В указанное число входят:

1. Закрытое положение форсунки. Начальный этап процесса. Предусматривает создание высокого давления одновременно со стороны плунжера и пружины, благодаря чему форсунка остается закрытой.

2. Начало впрыска. Автоматика подает сигнал, вследствие которого плунжер форсунки начинает двигаться вверх. В результате давление на иглу уменьшается, она также начинает подниматься, обеспечивая начало поступления топлива в камеру сгорания.

3. Полностью открытое положение форсунки. На этом этапе плунжер управления поднимается максимально, достигая верхнего упора. Это означает аналогичное перемещение иглы и режим полного открытия форсунки.

4. Конец впрыска. Завершающая стадия рабочего процесса. Она состоит в опускании управляющего плунжера и иглы форсунки, следствием чего становится перекрытие доступа горючего в камеру сжигания.

Приведенная выше схема с некоторыми корректировками достаточно точно описывает эксплуатацию дизельных форсунок любого типа. Важно понимать, что количество подобных рабочих циклов в период времени зависит от типа и мощности агрегата, вида самой форсунки и большого количества других факторов.

Разновидности и принцип работы


В сегодняшних условиях применяются самые разные виды дизельных форсунок. Их большое разнообразие объясняется как крайне широкой сферой применения, так и различиями в задачах, для решения которых они предназначаются.

Механическая форсунка

Традиционный вариант устройства, постепенно уступающий по популярности современным инженерным решениям. Именно его принцип действия был приведен выше при описании рабочего цикла дизельной форсунки. Он базируется на срабатывании клапана при достижении определенного уровня давления.

Механическая форсунка применяется в автомобилестроении в течение нескольких десятков лет. Однако, введение новых экологических стандартов и всеобщее стремление к повышению уровня экономичности дизельных двигателей привело к неуклонному вытеснению этого классического устройства более эффективным разработкам последних лет.

Главное направление совершенствования форсунки в частности и дизельного двигателя в целом – это передача контроля и управления большинством рабочих процессов электронным приборам и датчикам. Кроме того, отдельного упоминания заслуживает форсунка с двумя пружинами, разделяющая подъем иглы на две стадии. В результате обеспечивается гибкость в подаче горючего, более полное сгорание топлива и уменьшение шума при работе агрегата.

Электромеханическая форсунка

Главное отличие от механического варианта состоит в использовании для перемещения иглы форсунки вместо пружины электромагнитного клапана. Он управляется автоматикой, благодаря чему достигается точное определение количества необходимого топлива и оптимальная периодичность его впрыска.

Электромеханическая форсунка напоминает часто используемую в инжекторных бензиновых двигателях электромагнитную версию устройства. Она не используется в дизель-моторах, так как не способна выдерживать высокое давление.

Насос-форсунка

Еще одна вариация традиционного дизельного двигателя. Устройство агрегата не предполагает наличие обычного ТНВД. Вместо него для нагнетания необходимого уровня давления используются специальные насос-форсунки. Фактически, вместо одного топливного насоса высокого давления устанавливаются несколько более простых, каждый из которых обслуживает только одну форсунку.

Такое устройство двигателя позволяет подавать топливо в камеру сгорания под очень высоким давлением. Как следствие – обеспечивается уверенное самовоспламенение и более полное сжигание горючего. Отсутствие ТНВД позволяет сделать двигатель более компактным, что также выступает немаловажным достоинством.

Однако, использование системы насос-форсунка имеет и определенные недостатки. Главные из них – высокая требовательность к качеству применяемого дизельного топлива, а также более значительные расходы на изготовление двигателя в целом. Именно поэтому стремительно растет популярность еще одной разновидности дизельных форсунок и системы, предусматривающей их применение.

Пьезоэлектрическая форсунка

Устройство пьезофорсунки напоминает электромеханические или электромагнитные аналоги. Главное отличие заключается в использовании вместо электромагнитного клапана специального пьезоэлемента, часто называемого пьезоэлектрическим кристаллом. Его наличие обеспечивает крайне высокое быстродействие устройства. Благодаря этому клапан срабатывает в 4 раза чаще, чем в обычных электромагнитных форсунках.

Нет ничего удивительного, что пьезоэлектрические форсунки стали важным элементом системы впрыска Common Rail, которая используется сегодня практически повсеместно. Ее использование позволяет увеличить эффективность работы дизельного двигателя и повысить КПД при одновременном уменьшении расхода топлива и количества вредных выбросов.

Форсунки для дизельных двигателей – что это?

В зависимости от типа распылителей и топливной системы максимальное давление форсунок дизельных двигателей в распылителе в момент впрыска составляет порядка 200 МПа, а время – от 1 до 2 миллисекунд. От качества впрыска зависит уровень шума двигателя, количество выбросов в атмосферу сажи, окислов азота и углеводорода.

Современные модели различаются по форме корпуса, размеру распылителей, а также по способу управления. Отличие различных типов форсунок состоит в использовании различных систем впрыска и видов распылителей, которые бывают штифтовыми и дырчатыми. Штифтовые применяют в двигателях с форкамерной системой зажигания, дырчатые устанавливаются на дизелях с непосредственным впрыском топлива.

По способу управления детали делятся на однопружинные, двухпружинные, с датчиками контроля положения иглы и управляемые пьезоэлектрическими элементами. Кроме всего прочего, схема форсунки дизельного двигателя зависит от способа ее монтажа в головке цилиндров: при помощи фланца, хомута или путем вворачивания в гнездо.

Ремонт насос-форсунок и ТНВД

 

        Ремонт насос-форсунок и индивидуальных насосных секций

 

     Все повышающиеся требования к ДВС привели к разработке множества различных систем подачи топлива в дизелях, соответствующих специальным нормам. Эти требования диктуют современным дизелям не только необходимость обеспечения малошумной работы, низкой токсичности ОГ и высокой топливной экономичности, но и большой мощности высокого крутящего момента.
Самые высокие давления впрыска топлива в настоящее время достигнуты в топливных системах с насос-форсунками и с индивидуальными ТНВД. Тот факт, что эти топливные системы позволяют обеспечить точное соответствие параметров впрыска топлива эксплуатационным условиям двигателя, означает их востребованность
    Система впрыска насос-форсунками является современной системой впрыска топлива дизельных двигателей.

В данной системе функции создания высокого давления и впрыска топлива объединены в одном устройстве – насос-форсунке. Назначение и принцип работы индивидуального ТНВД соответствуют работе насос-форсунки. Отличие заключается в том, что функции создания высокого давления и собственно впрыска разделены, а ТНВД и форсунка соединены коротким трубопроводом высокого давления.

    Применение насос-форсунок и индивидуальных ТНВД позволяет повысить мощность двигателя, снизить расход топлива, выбросы вредных веществ, а также уровень шума. 
    В системе на каждый цилиндр двигателя приходится своя насос-форсунка или индивидуальный ТНВД, а привод осуществляется от распределительного вала, на котором имеются соответствующие кулачки, через коромысло.
Насос-форсунка является одним из важнейших функциональных узлов дизельного двигателя и от качества проведенных работ и правильности её выполнения зависит работоспособность двигателя автомобиля.

    Исходя из этого наш «Дизель-сервис» много внимания уделяет вопросу технологии восстановления насос-форсунок.

    Насос-форсунка функционально разделяется на следующие элементы:
    Система создания высокого давления. Основными конструктивными элементами для создания высокого давления являются гильза насос-форсунки, выполненная в корпусе, с плунжером и возвратной пружиной.
    Электромагнитный клапан высокого давления. Этот клапан регулирует момент начала и продолжительность впрыскивания. Он состоит из следующих основных деталей – катушки, иглы клапана, якоря, сердечника и пружины электромагнитного клапана.
    Распылитель. Распылитель дозирует топливо и распыляет его по всему объему камеры сгорания, чем в конечном итоге определяется протекание процесса впрыскивания. Распылитель соединен с корпусом насос-форсунки гайкой.

   Надежный ремонт дизельных насос-форсунок в нашем «ДИЗЕЛЬ-СЕРВИСЕ»!  

 

Ремонт топливного насоса высокого давления (ТНВД)

 

Основная часть неисправностей, которые возникают на дизельных автомобилях, приходятся на систему подачи топлива. Один из самых дорогих ремонтов, который может быть в автомобиле – это ремонт топливного насоса высокого давления.Следует сразу объяснить, что если ваши знания ограничиваются заменой свечек и аккумулятора на машине, т.е вы не обладаете достаточными знаниями, то про ремонт ТНВД своими руками забудьте, и лучше отвезите свою машину на специализированную станцию технического обслуживания для диагностики и регулирования ТНВД.

Почему страдает ТНВД?

    Основная причина выхода из строя ТНВД – наличие воды и грязи в дизельном топливе. При огромном давлении в несколько сотен бар и высокой температуре даже микроскопические частицы пыли и капельки воды приводят к необратимым последствиям.

Что делать?

  
Наш«Дизель — сервис» оказывает широкий спектр услуг по ремонту и обслуживанию компонентов дизельных систем импортного производства, ремонту ТНВД и дизельных двигателей в целом для легкового и грузового/коммерческого транспорта. Все ремонтные работы проводятся высококвалифицированным персоналом, прошедшим обучение у инженеров Bosch, на самом современном фирменном оборудовании с использованием оригинальных запчастей, неуклонно следующим техническому регламенту по ремонту дизельных двигателей и систем ТНВД, разработанному компаниями производителями.

    Одновременно с ремонтом ТНВД мы устраняем все вероятные причины появления неисправности — промываем топливный бак, заменяем топливные фильтры, проводим диагностику насос-форсунок, осуществляем другие необходимые мероприятия. Только так можно гарантировать, что ремонт проведен качественно и причина неисправности устранена полностью.

Надежный ремонт ТНВД в нашем «ДИЗЕЛЬ-СЕРВИСЕ»! 

    

 

 

ремонт PLD

  ООО»ТРАК ДИЗЕЛЬ» является сервисным центром по ремонту насос-форсунок и индивидуальных насосных секций, со всем необходимым ремонтным и диагностическим оборудованием, предназначенным для ремонта насос-форсунок и насосных секций.

Мы предлагаем  ремонт топливных систем дизелей грузовых  автомобилей  и спецтехники импортного производства. 

  •      Ремонт насос форсунок дизеля Volvo (Вольво) Fh22.
  •      Ремонт насос-форсунок дизеля Scania (Скания).
  •      Ремонт насос форсунок дизеля Iveco (Ивеко) Eurotech (Евротех), Eurostar (Евростар), Stralis (Стралис), Cursor (Курсор) 8 / 10 / 13.
  •      Ремонт насос форсунок (насосных секций) дизеля Мercedes (Мерседес) Аctros (Актрос), Аxor (Аксор), Аtego (Атего).
  •      Ремонт насос форсунок (насосных секций) дизеля Renault (Рено) Мagnum (Магнум) 400 / 440 / 480.
  •      Ремонт насос форсунок (насосных секций) дизеля Daf (Даф) евро 3. 

     Система впрыска насос-форсунками является современной системой впрыска топлива дизельных двигателей.В данной системе функции создания высокого давления и впрыска топлива объединены в одном устройстве –

насос-форсунке. Применение насос-форсунок позволяет повысить мощность двигателя, снизить расход топлива, выбросы вредных веществ, а также уровень шума. В системе на каждый цилиндр двигателя приходится своя насос-форсунка. 

 1 — электромагнитный клапан высокого давления; 2 — возвратная пружина; 3 — головка блока цилиндров; 4 — корпус насос-форсунки; 5 — камера высокого давления; 6 — распылитель; 7 — коромысло; 8 — кулачок привода; 9 — прижимная скоба; 10 — канал обратного слива топлива; 11 — канал подачи топлива; 12 — гайка распылителя; 13 — клапан двигателя.

 Устройство насос-форсунки: Насос-форсунка функционально разделяется на следующие элементы:1. Система создания высокого давления. Основными конструктивными элементами для создания высокого давления являются гильза, выполненная в корпусе насос-форсунки, плунжер и возвратная пружина.

2. Электромагнитный клапан регулирует момент начала и продолжительность впрыскивания топлива. Он состоит из катушки, иглы клапана, якоря, сердечника, пружины. 3. Форсуночная часть предназначена для обеспечения непосредственного впрыска топлива в камеру сгорания, включает  распылитель, промежуточную шайбу, нажимной штифт, пружину и гайку распылителя.

Принцип действия насос-форсунки:   Управление насос-форсунками осуществляет система управления двигателем. Блок управления двигателем на основании сигналов датчиков управляет клапаном насос-форсунки.  Полости насос-форсунки постоянно заполнены топливом, подаваемым из бака под давлением примерно 5—6 атм. В момент, соответствующий такту впуска, блок управления подает сигнал на электромагнитный клапан, подача топлива из бака отсекается. Коромысло толкает плунжер, плунжер создает давление  в камере высокого давления. Под действием этого давления открывается распылитель, и происходит впрыск топлива в цилиндр. Впрыск топлива завершается при открытии клапана, при этом падает давление топлива и распылитель закрывается.

Неисправности насос-форсунки: В случае износа распылителя (увеличения диаметра отверстий в нем) форсунка “переливает”. Изношенный клапан не “держит” давление, топливо уходит обратно в магистраль подачи, вместо того чтобы, сжимаясь, попадать в цилиндр. Изношенный плунжер просто неспособен создать достаточное давление впрыска. Вот и все дефекты. В подавляющем числе случаев они устранимы.

Технология ремонта насос-форсунки.  Принципиально в ремонте насос-форсунки нет ничего сложного.  Капремонт форсунки подразумевает восстановление рабочих поверхностей всех пар трения и поверхностей уплотняющих фасок, и регулировку зазоров.  Допуски и посадки деталей насос-форсунок измеряются микронами. Любой ремонт начинаем с входной диагностики. На снятую с двигателя насос-форсунку устанавливаем новый распылитель, регулируем давление открытия, после чего  тестируем насос-форсунку на диагностическом стенде

NOVA DITEX.  Стенд  проверяет  ее на разных режимах работы: холостой ход, разгон, номинальный режим (условное движение автомобиля с крейсерской скоростью). Если с новым  распылителем отклонения результатов теста «на налив»незначительны,  можно обойтись заменой только распылителя и спокойно ездить еще до 100 000 км. Недолив более 10% означает критический износ клапана и, в самом худшем случае, плунжерной пары. В этом случае капитальный ремонт форсунки неотвратим. Восстановление пары трения втулка—клапан выполняется следующим образом. Шлифуем втулку до следующего ремонтного размера специальным инструментом. Стандарты, принятые в ремонте топливной аппаратуры, подразумевают увеличение диаметра от 5 до 50 мкм — этого достаточно, чтобы удалить всю выработку. Шлифуем  и  поверхности уплотняющих фасок — втулки и клапана. Устанавливаем  ремонтный клапан, регулируем тепловой зазор и ход клапана. Контроль осуществляется с помощью специального микрометрического инструмента.  Собираем насос-форсунку  и тестируем на диагностическом стенде, контролируя качество  ремонта.

диагностика форсунок дизеля

24.11.2019 21:17

Современные требования относительно экономичности, мощности и чистоты дизельных двигателей постоянно растут. Чтобы добиться отличных показателей дизеля, требуется формировать качественную топливную смесь – для этого требуются исправно работающие форсунки. Сегодня в такие моторы устанавливаются пьезо- и насос-форсунки, а также системы common rail.

Длительная эксплуатация автомобиля без прохождения технического обслуживания, или использование низкокачественного топлива приводят к загрязнению. В результате этого снижается мощность, увеличивается расход топлива, могут отмечаться проблемы с пуском мотора. Чтобы поддерживать работоспособность авто на высоком уровне, требуется регулярная диагностика форсунок дизельного двигателя.

 

Что может сломаться в электромагнитных устройствах

Самой частой причиной неисправностей становится некачественно топливо и вода. Значение имеет и естественный износ в результате интенсивной эксплуатации авто. Самой частой проблемой, при которой требуется ремонт форсунок дизельного двигателя является износ посадочного места для шарика мультипликатора.

При неплотно закрытом плунжере топливо стекает в сливную магистраль. Если над плунжером не создается необходимого давления. Топливо будет утекать через распылитель. Часто встречаются ситуации, когда игла не отрегулирована или отсутствует. Во всех случаях движок начинает работать нестабильно. Именно эти признаки и замечают водители. Диагностика топливных форсунок дизельных двигателей поможет избежать более серьезных проблем с ТНВД или мотором в целом.

 

Поломки пьезо устройств

Здесь могут встречаться стандартные для обычных устройств проблемы, но поскольку управляющий элемент более сложен, могут возникать и другие проблемы. К примеру, замыкание на «массу» самого пьезоэлемента. В этом случае мотор запустить невозможно. Так же может нарушаться регулировка иглы, распылители могут забиваться в результате попадания в систему некачественного топлива.

Достаточно редко встречаются ситуации, когда выходит из строя сам пьезоэлемент. В этом случае страдает вся топливная система, работа мотора заметно нарушается – он теряет тягу, начинает троить. Точно определить проблему можно лишь в специализированном сервисе, где проверка форсунок дизельного двигателя будет осуществлена на специальном стенде.

 

Как проводится проверка

Определения неисправности форсунок дизельного двигателя проводится только на специальном стенде. Каждый тип устройств распыления топлива требует индивидуального подхода. В «БОШ Авто Сервис Королёв» в Москве проводится качественная проверка, чистка, регулировка и ремонт всех видов таких систем.

Диагностика Common Rail

Это простой и эффективный метод впрыска. ТНВД и непосредственно устройства распыления соединены между собой специальной рампой – такой тандем гарантирует экономичность движка и его хорошую динамику. Но только в том случае, если регулярно контролировать всю систему и устранять неисправности. Проверка осуществляется в несколько этапов.

  1. Регулировка форсунок дизельного двигателя по основным параметрам, рекомендованных автопроизводителем.
  2. Первичная оценка самого устройства и его герметичности. Определяется наличие/отсутствие расплывания топлива.
  3. Проверка герметичности при разных значениях давления, момента впрыска и его текущих характеристик.

Проверка насос-форсунок

Их основным достоинством является объединение насоса и устройства распыления в одно устройство. Здесь отсутствует магистраль высокого давления, что позволило существенно увеличить давление при впрыске топлива – до 2050 бар. На первом этапе проводится оценка свойств электромагнита, после чего устройство разбирается для осмотра на факт наличия повреждений, определения степени износа основных узлов. Затем проверяется система распыления, при необходимости проводится промывка форсунок дизельного двигателя и сборка устройства. В завершении имитируется работа на минимальных и предельных оборотах.

Диагностика механических устройств

Такая схема основывается на действии стандартного клапана. Основным элементом такой системы является игла, которая открывает сопло лишь при заданном давлении. На стенде классические устройства тестируются с различными значениями давления. После этого при необходимости осуществляется чистка форсунок дизельного двигателя, есть возможность отрегулировать или отремонтировать их.

Проверка пьезо-устройств

Это самый прогрессивный вариант распыления. Использование таких устройств позволяет понизить расход солярки. Диагностика проводится в два этапа.

  1. Первоначальная проверка и промывка.
  2. Основной этап – контроль впрыска, параметров магнитов, подачи топлива на различных оборотах мотора, оценка герметичности.

Такая услуга отличается приемлемой ценой. Периодическая проверка позволяет поддерживать оптимальный расход топлива, а также избежать необходимости дорогостоящего ремонта основных элементов всей топливной системы и мотора в целом.

 


Устройство форсунки дизельного двигателя


Дизельные форсунки: особенности конструкции

Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над поршнем. Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

  • механические;
  • электромеханические;

Принцип работы механической форсунки

Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К топливному насосу высокого давления (ТНВД) подается горючее из топливного бака. За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

  • распылитель с возможностью перекрытия каналов;
  • распылитель с перекрываемым объемом;

В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает. 

Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

Электромеханическая дизельная форсунка

Дальнейшее развитие систем топливоподачи дизельного ДВС привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется ЭБУ двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

Блок управления отвечает за  момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается коленчатый вал двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше. 

Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

Насос-форсунка

Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков распредвала. Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска. 

Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам. Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

Принцип похож на работу механической форсунки с двумя пружинами.  Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

Устройство автомобилей



Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые. Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.

В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой. Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

***

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин. В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания — Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями». В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

***

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В. Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа. Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.



На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами. Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.

Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

***

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания. Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло. Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса. Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

***

Трубопроводы высокого давления дизеля


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

Устройство топливной форсунки дизельного двигателя

С момента появления дизельные двигатели постоянно совершенствовались.

Если первые силовые установки на дизельном топливе отличались повышенной вибрацией и значительной шумностью, современные аналоги практически сравнялись по своим характеристикам с традиционно тихими бензиновыми моторами.

См. также нашу статью Устройство и принцип работы дизельного двигателя.

Такой результат стал возможен благодаря внедрению принципиально иной технологии подачи горючего в камеру сгорания силовой установки. Специальные насос-форсунки осуществляют дозированную подачу дизельного топлива, обеспечивают плавность и экономичность работы мотора. Рассмотрим устройство топливной форсунки дизельного двигателя, а также принцип её работы.

Значение топливной форсунки для дизельного мотора

В современных дизельных моторах топливная форсунка является важнейшим элементом подачи горючего в камеру сгорания каждого цилиндра силовой установки. В зависимости от используемой системы управления впрыском топлива насос-форсунки могут отличаться по модели, форме, размеру и способу управления.

С одной стороны, использование топливных форсунок позволило существенно повысить эффективность сгорания дизельного топлива. Достоинством новой технологии стала оптимизация расхода горючего, увеличение мощности силовой установки, снижение шумности работы и уменьшение уровня вредных веществ в отработанных газах.

С другой стороны, повысились требования к качеству дизельного топлива. Дело в том, что топливная форсунка сильно подвержена загрязнению от различных примесей в низкокачественном топливе. Восстановление работоспособности или ремонт насос-форсунки обходятся недешево.

Несмотря на это благодаря топливным форсункам современные дизельные двигатели стали экономными и выгодными с точки зрения эксплуатации, особенно если речь идет о поездках на дальние расстояния. Благодаря централизации подачи и распределения горючего работа силовой установки стала более эффективной и надежной.

В своей работе топливная форсунка сочетает множество разнообразных технологий. Устройство помещено в индивидуальный защитный цилиндр, который нивелирует воздействие негативных внешних факторов. Далее приведены основные компоненты дизельной насос-форсунки и выполняемые ими функции:

  1. Плунжер – обеспечивает нагнетание давления внутри форсунки до рабочего уровня;
  2. Управляющий клапан – точно регулирует поступление топливной смеси и ее впрыск в камеру сгорания;
  3. Игла распылителя – обеспечивает распыление дизельного топлива под высоким давлением в камере сгорания;
  4. Пружина распылителя – надежно фиксирует иглу распылителя в необходимом положении;
  5. Блок управления – непрерывно контролирует работу топливной форсунки в автоматическом режиме.

Поступление и распределение дизельного горючего в форсунке осуществляется в 3 этапа:

Предварительный впрыск. Кулачок распределительного вала передает механическое усилие на коромысло и увлекает плунжер вниз. Происходит перемещение топливно-воздушной смеси по каналам форсунки, после чего её поступление временно приостанавливается. В замкнутом пространстве устройства образуется область высокого давления до 13 МПа. Под его воздействием игла преодолевает сопротивление пружины и выполняет предварительную подачу горючего. После открытия входного клапана и поступления топливной смеси в магистраль происходит снижение давления.

Основной впрыск. Начинается после опускания плунжера форсунки. Входной клапан закрывается, что приводит к стремительному увеличению давления до 30 МПа. После достижения рабочего давления игла поднимается и впрыскивает топливно-воздушную смесь в камеру сгорания. Максимальный объем впрыскиваемого горючего соответствует предельной мощности двигателя. При этом расход топлива существенно возрастает по сравнению с обычным ритмом работы силовой установки.

Дополнительный впрыск. Требуется для очистки сажевого фильтра, отвода копоти и других загрязнений.

Как видим, устройство топливной форсунки дизельного двигателя достаточно сложное, поэтому для её ремонта требуется специальное профессиональное оборудование. Неквалифицированное обслуживание в большинстве случаев оборачивается полной потерей работоспособности устройства.

Впрочем, современные топливные форсунки – это достаточно надежные устройства, которые практически не нуждаются во вмешательстве извне. Единственным условием для бесперебойной работы является качество дизельного топлива, в противном случае происходит загрязнение и снижается эффективность работы.

Топливная форсунка. Назначение, устройство, принцип работы

Форсунка — это элемент системы впрыска, предназначенный для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают:

  • электромагнитные форсунки
  • электрогидравлические форсунки
  • пьезоэлектрические

Общий вид форсунки системы «коммон рейл» фирмы «Бош» показан на рисунке.

Рис. Разрез электрогидравлической форсунки фирмы Бош: 1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

  • электромагнита 11
  • якоря электромагнита 10
  • маленького шарикового управляющего клапана 8
  • запорной иглы 2
  • распылителя 3
  • поршня управляющего клапана 5
  • подпружиненного штока 9

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

В отличие от бензиновых электромеханических фор­сунок, в форсунках «Коммон Рейл» электромагнит при давлении 1350 … 1800 кгс/см2 не в состоянии поднять за­порную иглу, поэтому используется принцип гидроусиления.

Рис. Принцип действия электрогидравлической форсунки: а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т.е. подаче топлива.

Рис. Аварийный ограничитель подачи топлива через форсунку

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно  чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Рис. Пьезоэлемент

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

Рис. Разрез пьезоэлектрогидравличе­ской форсунки: 1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Рис. Принцип работы пьезофорсунки: 1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Из-за особенностей процесса сгорания, присущих дизельным двигателям с турбонаддувом, для уменьшения шума и снижения выброса оксидов азота в цилиндры двигателя перед впрыском основной дозы топлива подается небольшая капля топлива (1…2 мм3) «пилотный впрыск», которая плавно перетекает в распыление остальной части топлива. Предварительный впрыск позволяет топливу воспламеняться быстрее. Давление и температура при этом возрастают медленнее чем при обычном впрыске, что уменьшает «жесткость» работы двигателя и его шум с одновременным снижением выбросов окислов азота. Характер процесса двойного впрыска показан на рисунке:

Рис. График процесса двойного впрыска и характер распыления топлива

При холодном двигателе и в режиме, приближенном к холостому ходу, происходит два предварительных впрыска. При увеличении нагрузки предварительные впрыски один за одним прекращаются, пока при полной нагрузке двигатель не перейдет в режим основного впрыска. Оба дополнительных впрыска необходимы для регенерации сажевого фильтра.

Благодаря тому, что пьезофорсунки имеют намного меньшее время срабатывания, чем традиционные электромагнитные, стало возможным разделение горючей смеси на несколько отдельных микродоз: после многократных предварительных впрыскиваний очень небольших количеств горючей смеси следуют либо основное впрыскивание, либо при необходимости многие так называемые «послевпрыскивания».

Рис. Характер протекания процесса многоступенчатого впрыска

Время между предварительным впрыскиванием и основным впрыскиванием составляет 100 мс. Объем топлива, попадающего в цилиндр в момент каждого предварительного впрыскивания, составляет 1,5 мм3. Это делается для равномерного распределения давления в камере сгорания и, соответственно, уменьшения шума, создаваемого в процессе сгорания. После впрыскивания, в свою очередь, служат для снижения токсичности отработавших газов. Если в конце цикла сгорания произвести еще одно впрыскивание в цилиндр, то оставшиеся частицы сгорают лучше. Кроме того, в случае, когда во впускной системе установлен фильтр для улавливания несгоревших частиц, такая технология за счет высокой температуры способствует его очистке. Это особенно актуально для двигателей с большим рабочим объемом.

Более того, сейчас стало возможным использовать до семи тактов впрыска вместо трех за один рабочий процесс. Благодаря этому появляются новые возможности для увеличения номинальной мощности двигателя и еще более точного контроля за составом отработавших газов.

Новое поколение форсунок позволяет регулировать не только количество впрыска по времени и его фазы, но и управлять подъемом иглы, что позволяет более четко управлять процессом впрыска.

В настоящее время производители дизельной топливной аппаратуры, например фирма Бош, разработала системы Common Rail с давлением впрыска до 2500 кгс/см2. В этих системах форсунка отличается от традиционной тем, что максимальное давление создается не гидроаккумуляторе, а в самой форсунке. Она снабжена миниатюрным гидроусилителем давления и двумя электромагнитными клапанами, позволяющими варьировать момент впрыска и количество топлива в пределах одного рабочего цикла. Таким образом, здесь совмещены принципы работы Common Rail и форсунки.

Другим направлением форсунок фирмы Bosch является устройство в форсунках небольшого напорного резервуара, сокращающего обратный ход к циклу низкого давления. Это позволяет увеличить давление впрыска и КПД системы.

Форсунки с повышенным давлением впрыска соответствуют нормам Евро-6.

Где в автомобиле находятся форсунки?

Тип впрыска топливаРасположение форсунок
Центральный впрыскОдна или две форсунки располагаются во впускном трубопроводе перед дроссельной заслонкой. Таким образом, форсунка заменяет устаревшую технологию – карбюратор.
Распределенный впрыскДля каждого цилиндра установлена своя форсунка, которая осуществляет впрыск топлива во впускной трубопровод цилиндра. Форсунка располагается у основания впускного трубопровода
Непосредственный впрыскФорсунки располагаются в верхней части стенок цилиндра и впрыскивают топливо непосредственно в камеру сгорания.

Видео-урок: Система питания дизеля

Система впрыска дизельного топлива насос-форсунка — DieselMotors

Устройство и принцип действия. Система впрыска дизельного топлива с насос-форсунками. Общие сведения.

Требования к современным дизельным двигателям в отношении мощности, топливной экономичности и экологичности становятся все выше. Чтобы удовлетворить эти требования, необходимо обеспечить хорошее смесеобразование. Для этого двигатели должны оснащаться эффективными системами впрыска, которые не только обеспечивали бы мельчайший распыл топлива благодаря высокому давлению впрыска, но также точно регулировали момент впрыска и количество впрыскиваемого топлива. Системой, которая удовлетворяет этим высоким требованиям, является впрыск с использованием насос-форсунок. Еще сам Рудольф Дизель вынашивал идею объединить в одном узле топливный насос и топливную форсунку, что позволило бы отказаться от трубопроводов высокого давления и, тем самым, повысить давление впрыска. Однако в то время не существовало ни технических, ни технологических возможностей реализовать на практике эту идею. Как уже говорит само название, насос-форсунка представляет собой впрыскивающий насос с узлом управления и форсунку в едином узле. Как и ТНВД с форсунками, система впрыска с насос-форсунками выполняет следующие функции: создает высокое давления для впрыска топлива, впрыскивает определенное количество топлива в определенный момент. На каждый цилиндр двигателя приходится по насос-форсунке. Поэтому отсутствуют топливопроводы высокого давления, которые имеются на двигателе с ТНВД.

Устройство дизельной насос-форсунки.

Дизельные насос-форсунки расположены непосредственно в головке блока. На распределительном валу имеется четыре кулачка для привода насос-форсунок. Посредством коромысел усилие передается на плунжеры насос-форсунок. Кулачок привода насос-форсунки имеет профиль, обеспечивающий резкий подъем коромысла и медленное опускание коромысла. При резком подъёме коромысла плунжер насос-форсунки прижимается книзу с высокой скоростью, и тем самым быстро достигается высокое давление. При медленном опускании коромысла плунжер насос-форсунки движется кверху относительно медленно и равномерно, вследствие чего топливо может поступать в камеру высокого давления без образования воздушных пузырьков. Непосредственно сам впрыск происходит при подаче управляющего напряжения электронным блоком управления на электромагнитный клапан управления дизельной насос-форсункой.

Дизельная насос-форсунка.

Обязательным условием эффективного сгорания является хорошее смесеобразование. Для этого топливо должно подаваться в цилиндр в нужном количестве, в нужный момент и под высоким давлением. Уже при незначительных отклонениях от требуемых параметров распыления топлива отмечается увеличение содержания вредных веществ в отработавших газах, повышение шумности процесса сгорания и увеличение расхода топлива. Для достижения максимально возможной плавности протекания процесса сгорания перед основным впрыском осуществляется предварительный впрыск малого количества топлива под небольшим давлением. Благодаря сгоранию этого малого количества топлива в камере сгорания повышаются давление и температура. При основном впрыске необходимо достичь хорошего смесеобразования для возможно полного сгорания топлива. Благодаря высокому давлению впрыска достигается очень тонкий распыл топлива, что позволяет получить весьма равномерную смесь топлива и воздуха. Полное сгорание топлива обеспечивает уменьшение выброса вредных веществ и повышение мощности двигателя. Процесс впрыска топлива, обеспечиваемой системой впрыска с применением дизельных насос-форсунок, с уменьшенным давлением при предварительном впрыске, повышенном давлении и быстром протекании процесса основного впрыска способствует улучшению показателей работы двигателя. Важным моментом для процесса сгорания в дизельном двигателе является малая величина задержки самовоспламенения. Задержка самовоспламенения представляет собой промежуток времени между началом впрыска топлива и началом повышения давления в камере сгорания. Если в этот временной промежуток подается большое количество топлива, то это ведет к резкому повышению давления в камере сгорания и, тем самым, к увеличению уровня шума процесса сгорания. Вследствие этого происходит ускоренное самовоспламенение топлива, поданного в ходе основного впрыска. Предварительный впрыск и наличие паузы между предварительным и основным впрыском способствует тому, что давление в камере сгорания повышается не скачкообразно, а относительно равномерно. Вследствие этого достигается снижение шумности процесса сгорания и уменьшение эмиссии окислов азота. Для хорошей работы двигателя важно, чтобы в конце процесса впрыска давление впрыска резко упало, а игла распылителя быстро возвратилась в исходное положение. При этом предотвращается попадание топлива в камеру сгорания под низким давлением и с плохим распылом. Такое топливо сгорает не полностью, что ведет к увеличению токсичности выхлопа.

Типовые неисправности насос-форсунок:
— клапанный узел — 63% случаев
— распылитель — 30% случаев
— электромагнитная часть — 5% случаев,
— плунжер, пружина, корпус — 2% случаев.
по статистике, наиболее частая причина выхода из строя насос-форсунки — это разрушение клапанного узла, его механические повреждения. Поскольку клапан отсекает топливо своим закрытием, то создается довольно большая нагрузка на седло клапана и отсекающую кромку тарелки клапана. Данный механизм очень надежный при использовании качественного топлива. Механические примеси, присутствующие в топливе, повреждают клапанный узел с нарушением его герметичности. В результате происходит значительный перерасход топлива при падении мощностных характеристик двигателя.
Выход из строя электромагнитной части управления приводит к неадекватной работе насос-форсунки на каком-то определенном режиме работы двигателя. Однако данная неисправность встречается довольно редко. 
Намного чаще выходит из строя распылитель. Нарушение в распылительной части оказывает влияние на дымность ДВС, значительное увеличение расхода топлива и ухудшение экологических показателей.

Система впрыска дизельного топлива насос-форсунка

Устройство и принцип действия

Общие сведения

Требования к современным дизельным двигателям в отношении мощности, топливной экономичности и экологичности становятся все выше. Чтобы удовлетворить эти требования, необходимо обеспечить хорошее смесеобразование. Для этого двигатели должны оснащаться эффективными системами впрыска, которые не только обеспечивали бы мельчайший распыл топлива благодаря высокому давлению впрыска, но также точно регулировали момент впрыска и количество впрыскиваемого топлива. Системой, которая удовлетворяет этим высоким требованиям, является впрыск с использованием насос-форсунок. Еще сам Рудольф Дизель вынашивал идею объединить в одном узле топливный насос и топливную форсунку, что позволило бы отказаться от трубопроводов высокого давления и, тем самым, повысить давление впрыска. Однако в то время не существовало ни технических, ни технологических возможностей реализовать на практике эту идею. Как уже говорит само название, насос-форсунка представляет собой впрыскивающий насос с узлом управления и форсунку в едином узле. Как и ТНВД с форсунками, система впрыска с насос-форсунками выполняет следующие функции: создает высокое давления для впрыска топлива, впрыскивает определенное количество топлива в определенный момент. На каждый цилиндр двигателя приходится по насос-форсунке. Поэтому отсутствуют топливопроводы высокого давления, которые имеются на двигателе с ТНВД.

Устройство

Дизельные насос-форсунки расположены непосредственно в головке блока. На распределительном валу имеется четыре кулачка для привода насос-форсунок. Посредством коромысел усилие передается на плунжеры насос-форсунок. Кулачок привода насос-форсунки имеет профиль, обеспечивающий резкий подъем коромысла и медленное опускание коромысла. При резком подъёме коромысла плунжер насос-форсунки прижимается книзу с высокой скоростью, и тем самым быстро достигается высокое давление. При медленном опускании коромысла плунжер насос-форсунки движется кверху относительно медленно и равномерно, вследствие чего топливо может поступать в камеру высокого давления без образования воздушных пузырьков. Непосредственно сам впрыск происходит при подаче управляющего напряжения электронным блоком управления на электромагнитный клапан управления дизельной насос-форсункой.

Обязательным условием эффективного сгорания является хорошее смесеобразование. Для этого топливо должно подаваться в цилиндр в нужном количестве, в нужный момент и под высоким давлением. Уже при незначительных отклонениях от требуемых параметров распыления топлива отмечается увеличение содержания вредных веществ в отработавших газах, повышение шумности процесса сгорания и увеличение расхода топлива. Для достижения максимально возможной плавности протекания процесса сгорания перед основным впрыском осуществляется предварительный впрыск малого количества топлива под небольшим давлением. Благодаря сгоранию этого малого количества топлива в камере сгорания повышаются давление и температура. При основном впрыске необходимо достичь хорошего смесеобразования для возможно полного сгорания топлива. Благодаря высокому давлению впрыска достигается очень тонкий распыл топлива, что позволяет получить весьма равномерную смесь топлива и воздуха.

Полное сгорание топлива обеспечивает уменьшение выброса вредных веществ и повышение мощности двигателя. Процесс впрыска топлива, обеспечиваемой системой впрыска с применением дизельных насос-форсунок, с уменьшенным давлением при предварительном впрыске, повышенном давлении и быстром протекании процесса основного впрыска способствует улучшению показателей работы двигателя. Важным моментом для процесса сгорания в дизельном двигателе является малая величина задержки самовоспламенения. Задержка самовоспламенения представляет собой промежуток времени между началом впрыска топлива и началом повышения давления в камере сгорания. Если в этот временной промежуток подается большое количество топлива, то это ведет к резкому повышению давления в камере сгорания и, тем самым, к увеличению уровня шума процесса сгорания. Вследствие этого происходит ускоренное самовоспламенение топлива, поданного в ходе основного впрыска. Предварительный впрыск и наличие паузы между предварительным и основным впрыском способствует тому, что давление в камере сгорания повышается не скачкообразно, а относительно равномерно. Вследствие этого достигается снижение шумности процесса сгорания и уменьшение эмиссии окислов азота. Для хорошей работы двигателя важно, чтобы в конце процесса впрыска давление впрыска резко упало, а игла распылителя быстро возвратилась в исходное положение. При этом предотвращается попадание топлива в камеру сгорания под низким давлением и с плохим распылом. Такое топливо сгорает не полностью, что ведет к увеличению токсичности выхлопа.

Источник

инжекторный насос для максимальной эффективности

Покупайте эти ориентированные на производительность инжекторные насосы на крупнейшей торговой платформе Alibaba.com. Инжекторный насос — это электронные устройства, которые проверяют выходное напряжение аккумулятора. Это помогает определить приблизительный срок службы батареи. Они также проверяют общее состояние батареи, например, ее способность накапливать заряд и любые другие проблемы, влияющие на производительность вашей батареи. Эти насос-форсунки позволяют тестировать аккумуляторы с высочайшей точностью.

Эти инжекторные насосы являются находкой как для профессионалов, так и для домашних мастеров. Они просты в использовании и обеспечивают быстрый и простой результат. Краткое описание того, как работает тестер, показывает, что они проверяют и измеряют токи, которые высвобождаются, когда проводящие элементы тестера касаются как положительного (+), так и отрицательного (-) контактов на аккумуляторе. Однако перед тестированием убедитесь, что ваша батарея надежно закреплена. Насос-форсунка имеет датчик, который отображает уровень заряда в силе тока в виде графика.Купите насос-форсунку на Alibaba.com, чтобы получить премиальное качество и обширное послепродажное обслуживание.

Вам не нужно использовать свой язык, чтобы проверить, заряжены ли ваши батареи. Инвестируйте в эти насосы-форсунки , чтобы получить более точные результаты без боли. Прежде чем инвестировать в него, вам необходимо убедиться, что насос-форсунка совместим с вашими батареями. Просто используйте ткань, чтобы вытереть пыль и грязь с экрана дисплея.Эти насосы-форсунки экономят время доставки, предоставляя вам наиболее точные результаты.

Откройте для себя лучшие продукты и доступные модели насосов-форсунок на Alibaba.com. Они предотвращают неожиданные поломки, тем самым избавляя вас от стресса и суеты в последнюю минуту. Приобретите себе эти новейшие инжекторные насосы по выгодным ценам у наших надежных оптовых и розничных продавцов.

Дизельные продукты — Stanadyne

Сочетание опыта, новейших технологий и дизайна нового поколения.

Уже более 65 лет Stanadyne является мировым лидером в производстве оборудования для впрыска топлива для дизельных двигателей. Технический опыт и инновационные разработки Stanadyne предлагают производителям двигателей топливные системы, которые специально разработаны, надежны и поддерживают соответствие текущим и будущим стандартам выбросов.

Несмотря на самые суровые условия окружающей среды и низкое качество топлива, наша надежная технология обеспечивает высокую производительность и надежность в течение длительного срока службы.Наши принципы перекачки следующего поколения и масштабируемая архитектура предлагают компактные, легкие решения с лучшей в своем классе компоновкой для применений с давлением впрыска до 2400 бар.

Наша запатентованная технология обеспечивает преимущества в мощности, производительности и эффективности, начиная от дорожных и внедорожных и заканчивая стационарными машинами.


Дизельные топливные насосы и форсунки

Дизельная система впрыска топлива

Для двигателей, которые должны соответствовать самым строгим стандартам выбросов, дизельный насос Common Rail высокого давления Stanadyne предлагает конкурентное преимущество благодаря эксцентричной стратегии эксплуатации нового поколения.Разработанные для непревзойденной стойкости к топливам с низкой смазывающей способностью и требовательного срока службы, насосы Common Rail Stanadyne обеспечивают мощность и производительность в лучшем в своем классе корпусе.

Электронный поворотный Электронные центробежные насосы

DE имеют полный набор функций и управляются электронным способом, что позволяет формировать кривую расхода топлива и обеспечивает сверхбыстрое время отклика. Благодаря стратегии работы «насос-перелив» и одинарному соленоидному приводу, насос DE обеспечивает точный контроль количества и времени впрыска.

Роторный дизельный топливный насос EcoForce

Используя наш опыт в области традиционных систем впрыска топлива и точного проектирования, насос EcoForce разработан таким образом, чтобы быть компактным и легким, обеспечивая мощность и производительность двигателей мощностью менее 50 л. с. EcoForce имеет механическое управление и оснащен усовершенствованными механизмами синхронизации и контроля, которые позволяют улучшить выбросы и топливную экономичность.

Механический Ротари Механические роторные насосы

DB используются для заправки дизельных двигателей с тех пор, как мы изобрели эту технологию более шести десятилетий назад.Наша революционная конструкция выдержала испытание временем: миллионы таких насосов используются по всему миру. Наши роторные насосы с расходомером на входе обеспечивают превосходное управление и наилучшие характеристики регулирования среди оборудования для впрыска топлива с механическим насосом-линии-форсункой.

Покупка форсунки дизельного топлива

Когда вы хотите купить дизельный насос для замены старого, важно сопоставить номера деталей, чтобы убедиться, что он подходит для вашего автомобиля. Сделать это правильно с первого раза . Вы же не хотите купить не тот, а затем снова и снова искать правильный.

At Your Car Spares Ltd — Что мы тестируем и ищем!!!!

Каждая часть отличается, поэтому нам нужно искать разные вещи для разных частей. Проверить дизельный топливный насос не так просто, как другие детали, и лучший способ проверить дизельный насос — снять его с автомобиля для более тщательного осмотра.Причина, по которой это трудно проверить, заключается в том, что система впрыска дизельного топлива развивалась с годами и стала настолько более сложной, что диагностировать проблему стало намного сложнее, и часто лучший способ сделать это — доставить ее в сервисный центр. профессионал. Если автомобиль не заводится, это может быть по многим причинам, но для того, чтобы исключить, что это дизельный инжекторный насос, нам нужно приблизиться к нему, чтобы прислушаться к любым шумам. Если насос форсунки «щелкает» при повороте ключа зажигания, это означает, что на насос подается питание, но если он «щелкает» и все равно не запускается, вам необходимо проверить топливопроводы, чтобы убедиться, что топливо подается. проходят, и в линиях нет препятствий.Другой тест состоит в том, чтобы использовать чистые топливопроводы и проверить, поступает ли топливо в насос топливных форсунок, а затем проверить, поступает ли топливо в форсунки.

Где найти номер детали

Наиболее распространенным производителем насосов для дизельных топливных форсунок является Bosch. Ниже мы покажем вам два разных типа инжекторных насосов Bosch и где можно найти их артикул. Насосы дизельных топливных форсунок будут иметь номер детали производителя и номер детали производителя оригинального оборудования (OEM), полученный от производителя автомобиля.

Как работает насос-форсунка дизельного топлива?

Насос форсунки дизельного топлива, часто называемый топливным насосом высокого давления или топливным насосом двигателя, является жизненно важной частью топливной системы и работы автомобиля. Насос форсунки отвечает за подачу топлива из топливного бака через топливную систему, а затем за распределение его по форсункам в нужное время, чтобы обеспечить бесперебойную работу двигателя в цикле. Количество топлива, используемого насосом-форсункой, зависит от силы нажатия на педаль газа: чем сильнее вы нажимаете на педаль, тем больше топлива должен выдать насос-форсунка.Инжекторный насос также может накапливать топливо и отправлять его под невероятно высоким давлением, которое измеряется в фунтах на квадратный дюйм (фунт на квадратный дюйм). Во время процесса топливо будет очищаться по мере его движения из топливного бака к насосу-форсункам, чтобы убедиться, что в топливе нет частиц, которые могут повредить двигатель. Топливная система начинается с того, что топливо перемещается из топливного бака блоком датчика топлива через топливопроводы, а затем через топливный фильтр, где топливо очищается. Топливный фильтр удерживает любые частицы, которые пытаются пройти, а также воду.Некоторые системы различаются, и поэтому в процессе могут быть дополнительные части. Некоторые системы используют датчик давления на топливной рампе для определения давления в топливной рампе, а затем передают эту информацию в ЭБУ. ЭБУ управляет насосом форсунки, и если давление в топливной рампе слишком низкое, он дает указание насосу высокого давления выпустить больше топлива в рампу.

вернуться к Автозапчасти

Машина для обслуживания дизельных инжекторных насосов

от китайского производителя, производителя, фабрики и поставщика на ECVV.ком

Технические характеристики

Машина для обслуживания дизельных форсунок

CCR-6800 имеет полностью автоматическое управление и может удобно проводить техническое обслуживание инжектора Euro Ⅲ, EuroⅣ, EuroⅤ и насоса высокого давления. Он может тестировать сотни видов инжекторов и насосов высокого давления, включая BOSCH, SIEMENS, DELPHI, DENSO, Caterpillar и т. д., с полным набором экспериментальных данных.Этот испытательный стенд, интегрированный с оригинальным импортным высокоточным датчиком расхода, имеет функции: автоматическое измерение количества масла и автоматическую генерацию отчета о техническом обслуживании форсунки топливного насоса и т. д.

В продукт можно добавить тестовый модуль EUP/EUI.

Характеристики продукта

1)Полностью автоматическое управление

После установки насоса или форсунки, подлежащих испытанию, нажмите «Пуск», стенд автоматически отрегулирует каждое условие испытания и испытание, такое как измерение расхода топлива, создание отчетов об испытаниях, оценку квалификации и т. д.

2 )Автоматическая калибровка

При тестировании новой форсунки стенд может автоматически регулировать параметры каждого рабочего состояния, собирать и сохранять данные, а также генерировать стандартные данные для ее ремонта в соответствии с электрическими характеристиками новой форсунки.

3) Интеллектуальная диагностика

С помощью принятого интеллектуального механизма устранения неполадок стенд может самостоятельно проверять соединения жгутов, блокировку DRV, условия работы и т. д. и подсказывает пользователям.

4) Множественная защита

Защита от перегрева, перенапряжения и перегрузки; советы по нехватке масла в баке; защита от слишком высокого давления в рампе; автоматическое отключение при снятии крышки операционной; шесть фильтров защиты; и Т. Д.


Технические параметры:

Рабочее напряжение

AC380В / 220В

Выходная мощность

11~15 кВт

Диапазон давления в рампе

0~2000 бар

Точность контроля давления в рампе

±0.5 МПа

Скорость вращения топливного насоса

0 ~ 4000 об/мин

Точность дизельного фильтра

< 5 U

Диапазон датчика форсунки

0. 1 мл — 600 мл

Точность датчика инжектора

0,1%

Диапазон датчика насоса

10 мл — 3000 мл

Точность датчика насоса

0.5 %

Измерение

198*84*150 (см)

Нетто

700 сом


Тест форсунки
Оснащен оригинальным импортным насосом Bosch CP3 и топливной рампой высокого давления с DRV, может управлять 6-цилиндровым электромагнитным клапаном и пьезоэлектрической форсункой для проведения испытаний форсунок в различных условиях работы.

Можно выбрать количество цилиндров форсунок для выполнения автоматического измерения цилиндр за цилиндром;

Автоматическое управление оборотами и рулевым управлением;

Автоматическая регулировка давления в рампе с максимальным значением до 2000 бар и минимальным значением в пределах 10 бар;

Автоматическое измерение количества масла и создание отчета.

После сравнения экспериментальных данных сотен видов форсунок с отчетами он может автоматически решить, подходит ли тестируемая форсунка или нет.

Все каналы привода форсунок имеют функцию защиты от короткого замыкания.


Проверка насоса
Может управлять различными типами насосов высокого давления, такими как Bosch CP1/CP2/CP3, Delphi CRSP, Denso HP3/HP4, Siemens DCP и насос Denso HP0.

Автоматическое управление оборотами и рулевым управлением;

Автоматическая регулировка давления в рампе с максимальным значением до 2000 бар и минимальным значением в пределах 10 бар;

Автоматическое измерение количества масла и создание отчета.

После сравнения экспериментальных данных сотен видов насосов с отчетом он может автоматически определить, хорош ли тестируемый насос или нет.

Все каналы привода ТНВД имеют функцию защиты от короткого замыкания.


Тест насос-форсунки/форсунки (дополнительно)

Модуль EUI/EUP может тестировать сотни EUI и EUP, включая Bosch, Cummins, Volvo, Caterpillar, Hengyang и Witt и т. д. В этот модуль включены различные адаптеры.

Автоматическое управление оборотами и рулевым управлением;

Автоматическая настройка для управления PW и BOI;

Автоматическое измерение количества масла и создание отчета.

После сравнения экспериментальных данных сотен EUI/EUP с отчетом он может автоматически решить, подходит ли тестируемая EUI/EUP.

Каналы привода имеют функцию защиты от короткого замыкания.


Аффилированные функции

Резервное копирование данных, обновление системного программного обеспечения и функции обновления данных.

Десятки аксессуаров обеспечивают удобную установку и тестирование различных типов форсунок и насосов высокого давления.

Что вызывает отказ инжекторных насосов?

Может быть много причин для ТНВД fa il .

Прежде чем мы ответим на вопрос «Что вызывает отказ ТНВД?», нам нужно определить, что они из себя представляют. ТНВД представляют собой механические устройства , специально предназначенные для двигателей, работающих на дизельном топливе . Эти устройства делают дизельное топливо доступным для процесса внутреннего сгорания и обычно приводятся в действие косвенным соединением с коленчатым валом через шестерни, цепи или зубчатый ремень.Это непрямое соединение также может приводить в движение распределительный вал.

Как указывает Under Hood Service, плохое техническое обслуживание является главным разрушителем этой критически важной детали дизельного двигателя . Главная обязанность любого владельца, желающего сохранить свои вложения в автомобиль, — это регулярная замена масла. Отсутствие смазки между кулачками распределительного вала и насосом не позволяет поршням двигаться со скоростью, достаточной для создания необходимого давления.

В рамках этого жизненно важного шага владелец автомобиля, работающего на дизельном топливе, должен убедиться, что во время замены масла используется надлежащее масло.Масло должно соответствовать спецификациям производителя оригинального оборудования (OEM). Кроме того, бак всегда должен быть заполнен дизельным топливом.

Хотя большинство владельцев сочли бы это «легким делом», многие были ошеломлены тем фактом, что дизельное топливо в США имеет гораздо более низкое содержание серы, чем то, что доступно на европейских рынках. Тем не менее, ТНВД Bosch CP4 не соответствует , потому что он произведен в Европе и для его оптимальной работы требуется дизельное топливо с более высоким содержанием серы.

По данным Under Hood Service, гидравлические поршни этой модели с трудом продолжают работать и подавать достаточное количество топлива в двигатель. Без поршней, работающих с максимальной эффективностью, давление снижается, и подача топлива нарушается.

Другая причина, по которой насос-форсунка может выйти из строя, связана с утечками. Это устройство работает под высоким давлением, что приводит к утечке топлива. Это может происходить и в состоянии покоя, и для их идентификации может потребоваться заводской сканер.

Какой тип дизельного топливного насоса у Bosch CP4?

Дизельный топливный насос CP4 представляет собой топливный насос высокого давления Common Rail.Эта система с электронным управлением была создана для удовлетворения экологических требований нового тысячелетия в отношении контроля выхлопных газов. Как указывает Fassride.com, он состоит из подающего насоса, общей топливной магистрали, форсунок с электронным управлением, датчиков двигателя и всеобъемлющей компьютерной системы, контролирующей всю систему.

Какие автомобили подвержены проблемам с Bosch CP4?

Проблема, лежащая в основе проблем с Bosch CP4, заключается в том, что производители дизельного топлива в США. С. должны были знать, что инжектор этого европейского образца не будет работать на дизельном топливе с низким содержанием серы. Грузовики General Motors (GM) и Chevrolet с двигателем Duramax 6,6 л V8 или LGH, произведенные в период с 2010 по 2016 год, подвержены риску этой проблемы.

Руководство по времени впрыска — что это такое и как его отрегулировать

Возможно, вы уже слышали о времени впрыска раньше, но что это такое и как оно связано с вашим судовым двигателем? Вам вообще нужно беспокоиться, если ваш двигатель работает нормально?

Независимо от того, хотите ли вы увеличить мощность или ваш двигатель немного старше, чем вы хотели бы признать, регулировка момента впрыска может повлиять на всю систему.В этом руководстве мы обсудим, как работает этот процесс, преимущества внесения изменений в ваши двигатели Cummins или Detroit Diesel, а также как выполнить регулировку самостоятельно.

 

Время впрыска — что нужно знать

Внутренние компоненты морского двигателя сложны и зависят от точных движений, обеспечивающих эффективную и надежную мощность. Возможно, вы не понимаете всего, что происходит внутри системы, но если вы имеете представление о том, как работает двигатель внутреннего сгорания, вы можете выполнить всестороннюю регулировку момента впрыска.

В двигателе внутреннего сгорания тепловая энергия переходит в механическую энергию. Создаваемая мощность приводит в движение поршни двигателя, следовательно, приводит в движение коленчатый вал, а затем и сам морской агрегат. Тепловая энергия поступает от сгоревшей топливно-воздушной смеси внутри цилиндра.

Головка цилиндра содержит клапаны системы, распределительные валы, возвратные пружины клапанов, тарелки клапанов и форсунки. Блок двигателя, соединенный ниже цилиндра, содержит коленчатый вал, шатун и поршень.Поршень движется внутри цилиндра от нижней мертвой точки к верхней мертвой точке во время сгорания.

Есть несколько терминов, которые вам необходимо знать, чтобы понять, как поршень движется внутри цилиндра, в том числе:

— Верхняя мертвая точка (ВМТ):  Верхняя мертвая точка — это когда поршень находится в верхней части цилиндра, располагаясь дальше всего от коленчатого вала.

— Нижняя мертвая точка (НМТ):  Нижняя мертвая точка — это когда поршень находится ближе всего к коленчатому валу в самой нижней точке цилиндра.

— Перед верхней мертвой точкой (ВМТ): Перед верхней мертвой точкой — это точка непосредственно перед тем, как поршень достигает высшей точки цилиндра.

Процесс внутреннего сгорания

Процесс внутреннего сгорания генерирует энергию для движения поршней, что приводит к цепи событий, приводящих в движение двигатель.

В двигателе с впрыском топлива впускные клапаны выпускают воздух в цилиндр. Поршень движется вверх к ВМТ, сжимая воздух, и впускной и выпускной клапаны закрываются.

Дизельное топливо впрыскивается непосредственно перед тем, как поршень достигает верха. Топливно-воздушная смесь достигает своего максимального давления, когда поршень достигает ВМТ. Воздух под высоким давлением создает интенсивные температурные уровни, в результате чего дизельное топливо самопроизвольно воспламеняется.

Расширенные газы заставляют поршень вернуться в НМТ во время рабочего такта, каждый раз перемещая коленчатый вал. Затем газы выходят через выпускные клапаны в выхлопную трубу.

По мере того, как выхлопные газы выходят наружу, в цилиндр из впускных клапанов поступает больше воздуха, и процесс начинается заново.

Что такое время впрыска?

Момент впрыска, также называемый моментом разлива, — это момент, когда дизельное топливо поступает в цилиндр во время фазы сгорания. Когда вы регулируете синхронизацию, вы можете изменить момент впрыска топлива двигателем, следовательно, изменить время сгорания.

ТНВД часто приводится косвенно от коленчатого вала с помощью цепей, шестерен или зубчатого ремня, который также приводит в движение распределительный вал. Время работы насоса определяет, когда он будет впрыскивать топливо в цилиндр, когда поршень достигает точки ВМТ.

Производитель порекомендует время впрыскивания в соответствии с маркой и моделью имеющегося у вас судового двигателя. Они устанавливают подходящее время при изготовлении двигателя, поэтому вы получаете максимально возможную мощность, не превышая установленных законом пределов выбросов.

Если вы хотите отрегулировать момент впрыска на любом дизельном судовом двигателе, его возраст не имеет значения. Однако то, как вы вносите коррективы, может различаться в зависимости от того, старое ли это устройство или только что сошедшее с конвейера.

 

Почему вам может понадобиться отрегулировать время инъекции

Основной целью системы впрыска топлива является подача дизельного топлива в цилиндры двигателя, но то, как и когда подается топливо, может повлиять на производительность двигателя, уровень шума и выбросы.

Возможно опережение или замедление синхронизации двигателя. Увеличение времени работы двигателя приводит к тому, что процесс впрыска происходит раньше, чем это установлено производителем.

Напротив, замедление — это когда вы вносите изменения, поэтому топливо высвобождается после рекомендованного времени. Хотя замедление менее распространено по сравнению с опережением, оно может решить проблему задержки или дымления в морском двигателе. Он также может поддерживать вопросы производительности и экономии топлива.

Причины для регулировки времени впрыска

Вы можете отрегулировать время впрыска, если ваш судовой двигатель уже не работает или уже был отработан. Например, если вы установили новый ремень ГРМ или ТНВД, вам потребуется отрегулировать систему, чтобы она соответствовала заводским стандартам. Или вы можете настроить его в соответствии с вашими конкретными потребностями.Со временем синхронизация ТНВД замедляется, что приводит к таким проблемам, как:

Затрудненный запуск

Температура горячего двигателя

Плохая экономия топлива

Дым при запуске и разгоне

Правильные настройки могут вернуть системе исходный уровень производительности или повысить его.

Имейте в виду, что увеличение мощности вашего двигателя не всегда является правильным шагом.Иногда большая мощность может привести к чрезмерному дымлению выхлопа и задержке наддува. Это также может увеличить мощность вибрации двигателя и вызвать увеличение выбросов, что может не соответствовать стандартам EPA.

Убедитесь, что вы смотрите на свой судовой двигатель в целом и считаете ли это мудрым решением. Знайте, с чем может справиться ваше оборудование и что для этого требуется. Если вы не уверены, лучше всего работать с механиком, который знает все тонкости момента впрыска двигателя.

Преимущества регулировки систем синхронизации впрыска дизельного двигателя

Поскольку компонент газораспределения подает дизельное топливо под интенсивным давлением, детали и материалы могут выдерживать высокие уровни нагрузки и тепла.Благодаря высоким допускам система впрыска может хорошо работать при продолжительной работе двигателя. Время впрыска дизельного топлива также имеет более глубокий контроль.

Если объединить все его свойства, система синхронизации впрыска может составлять около 30 процентов от общей стоимости дизельного двигателя.

Если вы хотите улучшить синхронизацию впрыска топлива в ваших судовых устройствах, вы хотите убедиться, что двигатель полностью использует процесс впрыска топлива. Убедитесь, что правильное количество дизельного топлива высвобождается в нужное время в соответствии с вашими требованиями к мощности.Вам нужно контролировать как время впрыска, так и дозирование. Несколько преимуществ опережающего контроля опережения зажигания вашего двигателя включают в себя:

Повышенная мощность двигателя

Более высокое пиковое давление в баллоне

Снижение температуры выхлопных газов

Более высокие выбросы NOx

Повышенная топливная экономичность

Хотя производители устанавливают момент впрыска таким образом, чтобы сбалансировать выбросы и мощность, это не означает, что система судового двигателя настроена на максимальный потенциал. Вы можете увеличить синхронизацию вашего двигателя, чтобы увеличить мощность вашей машины, когда вы хотите работать на более высоких скоростях или буксировать больший вес.

Если вы хотите отрегулировать впрыск после достижения ВМТ, вы можете воспользоваться другими преимуществами, такими как предотвращение преждевременного сгорания, уменьшение дыма и устранение запаздывания.

 

Как это повлияет на мой морской двигатель?

Когда вы изменяете момент впрыска вашего судового двигателя, это влияет на многие компоненты.

Продвижение системы приведет к тому, что дизельное топливо будет впрыскиваться в цилиндр раньше, чем обычно, что также приведет к более быстрой фазе сгорания.Опережение синхронизации показывает количество градусов, на которое поршень достигает верхней мертвой точки и происходит зажигание.

Впрыск дизельного топлива до ВМТ означает, что топливовоздушная смесь может полностью сгореть до того, как поршень достигнет верхней точки. Этот процесс создает максимальное давление в цилиндрах двигателя, позволяя выхлопным газам толкать поршень вниз с максимально возможной силой.

Если опережение слишком большое, это может привести к тому, что смесь давит на поршни, когда они движутся вверх, заставляя их стучать друг о друга и повреждая двигатель.Это также известно как детонация.

Изменения, происходящие в вашей машине, зависят от типа судового двигателя и его возраста. Увеличение опережения зажигания на дизеле может повлиять на различные аспекты вашего двигателя, например:

Долговечность двигателя

Расход топлива

Момент зажигания

Соотношение топлива и воздуха

Мощность двигателя

Задержка впрыска

Задержка впрыска — это интервал времени от начала впрыска до начала сгорания, что означает, что он напрямую связан с синхронизацией. Период суспензии включает в себя как физические, так и химические интервалы, которые совпадают. Распад атомов, испарение и смешение топлива с воздухом замедляют процесс, как и реакция горения. Когда вы увеличиваете время, это уменьшает задержку впрыска, но когда вы замедляете впрыск, это увеличивает интервал.

Настройка идеального момента впрыска имеет решающее значение для поддержания и повышения производительности вашего двигателя. Дизельное топливо, которое поступает в цилиндр слишком рано или слишком поздно, может привести к чрезмерным вибрациям или серьезному повреждению компонентов.

 

Как отрегулировать время впрыска

То, как вы регулируете момент впрыска ТНВД, также зависит от типа вашего судового двигателя и его возраста. Перед выполнением каких-либо регулировок убедитесь, что трос холодного пуска вставлен, а ремень привода распределительного вала правильно натянут.

Некоторые из наиболее распространенных способов опережать время:

1.

 Запрограммируйте ECM .

Модуль управления двигателем — это компьютер, который анализирует информацию для управления работой вашей лодки.Это почти как мозг морского двигателя.

Модуль управления двигателем легче настроить в новых двигателях по сравнению со старыми версиями. Если вы знаете, как программировать ECM, вы на шаг впереди. Но если нет, вы можете положиться на механика, который доберется до EMC и подключит инструмент Flash, который перепрограммирует компьютерную систему. Для более старых компонентов есть другие части, которые вы можете изменить, чтобы изменить синхронизацию.

2. Модификация топливного насоса высокого давления

Один из наиболее простых способов изменить синхронизацию — отрегулировать топливный насос высокого давления.Все, что вам нужно сделать, это повернуть насос с помощью отвертки и торцевого ключа — стандартных инструментов, которые вы можете найти в своем гараже или ящике для инструментов. Вы должны убедиться, что вы точно измеряете регулировку синхронизации с помощью таймера или датчика для чтения.

Любое незначительное движение насоса приведет к значительным изменениям синхронизации. Избегайте радикальных корректировок и придерживайтесь незначительных изменений для правильных модификаций.

Если вы решили переделать ТНВД, вам потребуется:

1.С помощью торцевого ключа на болте переднего распределительного вала вручную поверните двигатель по часовой стрелке, пока первый цилиндр не окажется в ВМТ.

2. Впускной и выпускной клапаны должны быть закрыты, а метка ВМТ должна быть совмещена.

3. Установите циферблатный индикатор, удалив заглушку для проверки синхронизации, и убедитесь, что он показывает предварительную нагрузку около 2,5 мм.

4. Поверните коленчатый вал против часовой стрелки, пока индикатор не остановится, затем обнулите циферблат.

5. Провернуть коленчатый вал по часовой стрелке, остановившись в ВМТ.

6. Если показания датчика находятся в пределах значений, указанных производителем, вы можете увеличить или уменьшить время или оставить его как есть.

7. Ослабьте впрыскивающий насос, чтобы дизельное топливо быстрее поступало в цилиндры, и наоборот, для замедления.

8. Установив его в нужное положение, затяните крепежные болты.

9. Проверните судовой двигатель на несколько оборотов и повторите процедуру, чтобы убедиться, что вы правильно отрегулировали.

10.Снимите индикатор.

11. ut на заглушке проверки фаз газораспределения.

12. Запустите двигатель, проверив наличие утечек.

Поскольку усовершенствование вашей системы синхронизации впрыска зависит от ваших конкретных запросов и ситуаций, часто лучше полагаться на экспертов по дизельным судовым двигателям. Они укажут вам правильное направление, насколько нужно изменить время, чтобы оно соответствовало вашей машине.

3. Замените распределительный вал

.

Вы можете заменить оригинальный распредвал двигателя на распредвал с кулачками другого размера и формы.Это изменение позволяет вносить изменения при срабатывании клапанов и форсунок. Возможно, вам придется работать с опытным механиком или техником, потому что в этот процесс входит приличное количество математических расчетов.

4. Поменяйте местами прокладки кулачка и толкатели

Одним из более дешевых вариантов является приобретение новых прокладок и толкателей кулачка. Изменение любой из шестерен может привести к таким же регулировкам, как и при замене распределительного вала. Установка более толстых или более тонких прокладок повлияет на кулачки и толкатели, когда они соприкасаются.Таким образом, компоненты могут влиять на срабатывание клапанного механизма.

Вы можете проверить момент впрыска, измерив ход насоса форсунки в ВМТ с помощью циферблатного индикатора.

 

Найдите все, что вам нужно, в одном месте

Обладая 28-летним опытом работы в отрасли, компания Diesel Pro Power усердно работает над тем, чтобы вы были в авангарде нашей деятельности. Мы поставляем все детали судовых двигателей и держим их на складе 24/7 для удобной доставки по всему миру. Наши специалисты предлагают комплексные решения и стремятся упростить весь процесс покупки с помощью удобного и быстрого эргономичного веб-сайта.

Просмотрите наш ассортимент компонентов судовых двигателей или свяжитесь с нашей интуитивно понятной службой поддержки клиентов, позвонив нам по телефону 1-888-433-4735.

Травмы топливной форсунки высокого давления

Неужели здоровье и безопасность сошли с ума? Неужели стандарты оборудования настолько высоки, что оно уже не так опасно? Легко ли помнить, что оборудование, с которым вы работаете, довольно опасно, когда вы работаете с ним в течение очень долгого времени?

Статистика и статистика

Безопасность мастерской касается всех.

К сожалению, несчастные случаи в мастерской все еще случаются и случаются, и, во всяком случае, они кажутся более неприятными из-за восприятия, что они не так осуществимы с сегодняшними стандартами безопасности. От потери конечностей до ожогов 3-й степени случаи тяжелых несчастных случаев можно найти в любой мастерской.

Эти мастерские должны были принять соответствующие меры безопасности, провести все оценки рисков и повесить все предупреждающие знаки.

Это отражает тот факт, что задачи и оборудование мастерской сопряжены с высоким уровнем риска и что здоровье и безопасность должны быть приоритетом для всех.

В 2016/17 году правительство Великобритании сообщило о 31,2 миллионах рабочих дней, потерянных из-за болезней и травм на рабочем месте. Из почти 700 тысяч несмертельных травм 4% произошли в результате контакта с механизмами.

Это по-прежнему составляет более 27 000 раненых из-за оборудования, с которым они должны были работать изо дня в день. С потенциальным заработком, днями без оплаты и всеми средствами к существованию на кону последствия несчастных случаев с ОТ и ТБ являются проблемой для отдельного человека, а не только для компании.

Аварии высокого давления

Один из самых высоких рисков травм при работе с машинами Hartridge связан с функциями высокого давления машины. Травмы высокого давления не похожи на другие виды травм, и с ними нужно обращаться определенным образом.

Если оставить рану без присмотра, она может привести к потере конечности и функции.

В документе о травмах от инъекций под высоким давлением, обновленном в июне 2017 года, сообщается, что на впрыск дизельного топлива приходится 14% всех травм под высоким давлением, что говорит нам о том, что эти несчастные случаи все еще происходят в мастерских.Экстремальное давление может продавить материал через кожу и повредить нервы, сухожилия и суставы.

Подробнее: Бумага для травм высокого давления

Травма высокого давления может сначала выглядеть не так уж плохо, может быть, как простой порез, но они быстро и крайне ухудшаются.

Немедленно обратитесь за неотложной медицинской помощью, взяв с собой подробную информацию о происшествии, такую ​​как уровень давления и тип жидкости или химического вещества.

Если у вас есть какие-либо сомнения относительно того, что вам нужно делать в своей мастерской, поговорите со своими обученными лицами, оказывающими первую помощь, и узнайте о мерах по охране здоровья и безопасности, необходимых на вашем рабочем месте.

Меры безопасности

Если произойдет травма от высокого давления, мы попросим связаться с Хартриджем, чтобы мы могли дать совет и иметь возможность расследовать, как произошел несчастный случай, чтобы убедиться, что это не повторится.

Наше оборудование работает при давлении в тысячи фунтов на квадратный дюйм, поэтому мы предусмотрели множество мер безопасности в нашем Sabre CRi Master и других машинах Hartridge, а также всегда рекомендуем средства индивидуальной защиты.

Узнайте больше: Проблемы безопасности, связанные с очисткой DPF

На Sabre CRi Master вы найдете дверные блокировки, которые запрещают работу машины, если дверное ограждение не закрыто.При открытии двери и в случае неисправности система блокировки сбрасывает давление в машине и останавливает ее работу.

Также имеется два уровня защиты контуров высокого давления. Sabre постоянно отслеживает температуру жидкости и прекращает работу в случае перегрева.

Добавить комментарий

Ваш адрес email не будет опубликован.